Analisis Perbandingan Algoritma K-Means Dan K-Medoids Dalam Mengukur Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik

Authors

  • Sahril Saputra Universitas Dinamika Bangsa
  • Kurniabudi Universitas Dinamika Bangsa
  • Jasmir Universitas Dinamika Bangsa

DOI:

https://doi.org/10.33998/jakakom.2025.5.2.2292

Keywords:

student satisfaction, academic services, data mining, K-Means, K-Medoids

Abstract

This study aims to analyze the comparison of K-Means and K-Medoids algorithms in measuring the level of student satisfaction with academic services at the Islamic Institute of Mamba'ul Ulum Jambi. Student satisfaction data were collected through questionnaires and analyzed using both algorithms with the help of RapidMiner tools. Clustering results were evaluated using the Davies Bouldin Index (DBI) to determine the most optimal algorithm. The results showed that most students at the Islamic Institute of Mamba'ul Ulum Jambi were very satisfied with the academic services provided. Clustering with K-Means and K-Medoids successfully grouped students into three clusters: "Very Satisfied", "Satisfied", and "Unsatisfied". The K-Means algorithm produced clusters with 450 members ("Very Satisfied"), 351 members ("Satisfied"), and 218 members ("Unsatisfied"). Meanwhile, K-Medoids produced clusters with 638 members ("Very Satisfied"), 270 members ("Satisfied"), and 111 members ("Unsatisfied"). Based on the DBI value, the K-Medoids algorithm (0.222) showed better performance than K-Means (0.396) in clustering student satisfaction data. This study has important implications for the Islamic Institute of Mamba'ul Ulum Jambi in evaluating and improving academic services

Downloads

Download data is not yet available.

References

S. Shanti, “Analisis Pengaruh Pelayanan Keluhan Terhadap Tingkat Kepuasan Siswa Pada Sma 1 Pringgabaya Lotim Ntb.,” Jurnal At Tadbir: Journal Of Islamic Education Management (Iem), Vol. 5, No. 1, 2021, Doi: 10.51700/Attadbir.V5i1.125.

A. Sodik And M. Ma’sum, “Analisis Tingkat Kepuasan Mahasiswa Pada Layanan Sistem Informasi Akademik Studi Kasus Universitas X Menggunakan Metode Fuzzy Service Quality,” Jurnal Teknologi Dan Manajemen, Vol. 2, No. 2, 2021, Doi: 10.31284/J.Jtm.2021.V2i2.2303.

Y. Karauna, “Analisis Kepuasan Mahasiswa Universitas Buddhi Dharma Terhadap Repositori Perpustakaan Dengan Menggunakan Model Eucs,” Bibliotika : Jurnal Kajian Perpustakaan Dan Informasi, Vol. 6, No. 1, 2022, Doi: 10.17977/Um008v6i12022p124-137.

Pemerintah Republik Indonesia, Peraturan Pemerintah (Pp) Nomor 57 Tahun 2021 Tentang Standar Nasional Pendidikan. Indonesia: Ln.2021/No.87, Tln No.6676, Jdih.Setneg.Go.Id : 35 Hlm., 2021.

N. Widya Utami And M. Artana, “Text Mining Dalam Analisis Sentimen Pembelajaran Daring Di Masa Pandemi Covid 19 Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Informatika Teknologi Dan Sains, Vol. 4, No. 2, 2022, Doi: 10.51401/Jinteks.V4i2.2034.

A. Hoerunnisa, G. Dwilestari, F. Dikananda, H. Sunana, And D. Pratama, “Komparasi Algoritma K-Means Dan K-Medoids Dalam Analisis Pengelompokan Daerah Rawan Kriminalitas Di Indonesia,” Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 1, 2024, Doi: 10.36040/Jati.V8i1.8249.

A. Meiriza And E. Ali, “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pengelompokan Program Bpjs Ketenagakerjaan,” Indonesian Journal Of Computer Science, Vol. 12, No. 2, 2023.

N. Rohman And A. Wibowo, “Perbandingan Metode K-Medoids Dan Metode K-Means Dalam Analisis Segmentasi Pelanggan Mall,” Sintech (Science And Information Technology) Journal, Vol. 7, No. 1, Pp. 49–58, 2024.

A. Lesmana And W. Gunawan, “Perbandingan Algoritma K-Means Dan K-Medoids Dalam Penclusteran Data Penjualan Pt. United Teknologi Integrasi,” Techno.Com, Vol. 21, No. 3, 2022, Doi: 10.33633/Tc.V21i3.5845.

A. Supriyadi, A. Triayudi, And I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” Jipi (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), Vol. 6, No. 2, 2021, Doi: 10.29100/Jipi.V6i2.2008.

M. Terhadap Layanan Akademik Dan Kemahasiswaan, R. Kurniah, D. Yunika Surya Putra, E. Diana, P. Studi Informatika, And U. Profdrhazairin, “Penerapan Data Mining Decission Tree Algoritma C4.5 Untuk Mengetahui Tingkat Kepuasan,” Jurnal Informatika Dan Teknologi, Vol. 5, No. 2, 2022.

Q. I. Mawarni And E. S. Budi, “Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa,” Jurnal Sistem Komputer Dan Informatika (Json), Vol. 3, No. 4, 2022, Doi: 10.30865/Json.V3i4.4242.

R. E. Pawening, “Algoritma K-Means Untuk Mengukur Kepuasan Mahasiswa Menggunakan E-Learning,” Journal Of Technology And Informatics (Joti), Vol. 3, No. 1, 2021, Doi: 10.37802/Joti.V3i1.201.

K. S. H. K. Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, And S. Anwar, “Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means Dan Decission Tree,” Jurikom (Jurnal Riset Komputer), Vol. 8, No. 6, Pp. 323–329, 2021.

N. Tulus Ujianto And N. A. Ramdhan, “Implementasi Data Mining C4.5 Dalam Mengukur Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik,” Jurnal Ilmiah Intech : Information Technology Journal Of Umus, Vol. 4, No. 01, 2022.

R. Ardiansyah, “Kepuasan Masahasiswa Terhadap Pelayanan Administrasi Fakultas Tarbiyah Iain Parepare,” Institut Agama Islam Negeri (Iain) Parepare, Parepare, 2021.

A. A. Fauzi, S. Lestanti, And Z. Wulansari, “Pengelompokkan Kepuasan Siswa Terhadap Pembelajaran Daring Menggunakan Algoritma K-Medoids,” Jurnal Informatika Polinema, Vol. 9, No. 3, Pp. 307–314, 2023.

Published

2025-09-30

Abstract views:

1

PDF Download:

0

DOI:

10.33998/jakakom.2025.5.2.2292

Dimension Badge:

Most read articles by the same author(s)

1 2 3 4 5 > >>