Data Mining Implementation Using the FP-Growth Algorithm for the Analysis of Book Borrowing Patterns at the University of Jambi Library
DOI:
https://doi.org/10.33998/jakakom.2025.5.2.2295Keywords:
FP-Growth; Phyton; Google Colab; Pola Peminjaman Buku; Kelompok Buku; Universitas JambiAbstract
This study analyzes book borrowing transaction data from the Jambi University Library to identify borrowing patterns and extract valuable insights. By utilizing the FP-Growth algorithm within the framework of association rules, the research aims to uncover frequent itemset patterns that reveal relationships between different categories of borrowed books. These patterns are crucial for supporting librarians in making informed decisions for effective library management. The dataset consists of 2,978 book borrowing transactions recorded in 2022. Using Python for computational analysis, the study identified 14 association rules by applying a minimum support threshold of 0.005 and a minimum confidence threshold of 0.1. The resulting association rules include the following pairs: Management and Economics (0.006), Agriculture and Economics (0.014), Psychology and Education (0.013), General Works and Education (0.026), Mathematics and Education (0.005), Mathematics and Science (0.006), Mathematics and Economics (0.006), Social Sciences and Law (0.007), Politics and Law (0.012), Politics and Social Sciences (0.005), and Fiction and Language (0.005). These association rules offer valuable insights that can assist librarians in optimizing the organization of book collections, prioritizing acquisitions, and making strategic decisions to enhance the quality of library services. This approach highlights the potential of data-driven decision-making to improve library operations and increase user satisfaction.
Downloads
References
A. Sudirman, Manajemen Perpustakaan, 1st ed. Riau, 2019.
M. Kadafi, “Penerapan Algoritma FP-GROWTH untuk Menemukan Pola Peminjaman Buku Perpustakaan UIN Raden Fatah Palembang,” MATICS, vol. 10, no. 2, p. 52, Mar. 2018, doi: 10.18860/mat.v10i2.5628.
E. Kurniawan, “IMPLEMENTASI DATA MINING DALAM ANALISA POLA PEMINJAMAN BUKU DI PERPUSTAKAAN MENGGUNAKAN METODE ASSOCIATION RULE,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 5, no. 1, pp. 89–96, Mar. 2018, doi: 10.33330/jurteksi.v5i1.324.
M. Hafizh, T. Novita, D. Guswandi, H. Syahputra, and L. Mayola, “Implementasi Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Transaksi Penjualan Ekspor Online,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 3, pp. 242–249, Jul. 2023, doi: 10.47233/jteksis.v5i3.847.
R. Burhanudin Akbar et al., “IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK PENENTUAN REKOMENDASI PRODUK UMKM BERDASARKAN FREKUENSI PEMBELIAN,” 2023. [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
I. Astrina, M. Z. Arifin, and U. Pujianto, “Penerapan Algoritma FP-Growth Dalam Penentuan Pola Pembelian Konsumen Pada Kain Tenun Medali Mas,” 2019.
L. F. Lhaura Van, K. Anggraini, and S. Miftahul Jannah, “ALGORITMA FP-GROWTH DALAM MENEMUKAN POLA PEMINJAMAN BUKU PERPUSTAKAAN”.
M. Rusli and efrizal Sany, Algoritma Dan Pemogramman, I. Lombok Tengah: PPPI, 2021.
L. Sitorus, Algoritma Dan Pemograman, 1st ed. Yogjakarta: CV Andi Offset, 2015.
Kusrini and E. T. Luthfi, Algoritma Data Mining, I. Yogjakarta: Penerbit Andi, 2009.
Carudin, Marisa, Murnawan, and F. Reba, Buku Ajar Data Mining, 1st ed. jambi: Sonpedia Publishing Indonesia, 2024.
D. Mice, “Implementasi Data Mining Dengan Algoritma FP-Growth Untuk Mendukung Satrategi Promosi Pendidikan (Studi Kasus : Universitas Islam Kuantan Singingi),” Universitas Islam Kuantan Singingi, riau, 2022.
A. M. Siregar and A. Pusphabhuana, Data Mining : Pengolahan Data Menjadi Informasi Dengan RapidMiner, 1st ed. Surakarta: CV Oase Group, 2019.
E. Munanda and S. Monalisa, “PENERAPAN ALGORITMA FP-GROWTH PADA DATA TRANSAKSI PENJUALAN UNTUK PENENTUAN TATALETAK BARANG 1,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 7, no. 2, pp. 173–184, 2021.
D. Yunika Hardiyanti, H. Novianti, and A. Rifai, “PENERAPAN ALGORITMA FP-GROWTH PADA SISTEM INFORMASI PERPUSTAKAAN,” 2018.
Renaldi Dram and Edy, Menjelajahi Bahasa Phyton Dengan Google Colab. Bandung: Guapedia, 2024.
M. P. Satija, DDC Teori Dan Praktik Persepuluhan Dewey , 1st ed. Semarang: CV Sarana Gracia, 2021.
Abdiansah, Pemogramman Dasar Phyton 3.0 Teori Dan Implementasi, 1st ed. Palembang: Bening Media Publishing, 2022.
P. Naik and G. Naik, Conceptualizing Phyton In Google COLAB. Bilaspur, India: Shaswhat Publication, 2021.
T. Monisya Afriyanti and E. Retnoningsih, “Sistem Rekomendasi Buku Perpustakaan Menggunakan Algoritma Frequent Pattern Growth Library Book Recommendation System using Frequent Pattern Growth Algorithm.”