Rainfall Prediction Using Backpropagation Artificial Neural Network in Matlab Software

Authors

  • Muhammad Erlangga Prasetya Universitas Singaperbangsa Karawang
  • Eddy Ryansyah University of Singaperbangsa Karawang https://orcid.org/0009-0004-2077-158X
  • Muhammad Rusfauzi Surya University of Singaperbangsa Karawang
  • Yuyun Umaidah University of Singaperbangsa Karawang

DOI:

https://doi.org/10.33998/jakakom.2025.5.2.2398

Keywords:

Rainfall Prediction, Artificial Neural Network, Backpropagation, Matlab, Prediction Model Development

Abstract

This study aims to design and implement a rainfall prediction model using the Artificial Neural Network (ANN) approach with the backpropagation learning algorithm on the Matlab platform. Rainfall prediction is an important aspect in agriculture, hydrology, and water resources management, which requires accurate and adaptive methods to seasonal data patterns. In this study, monthly rainfall data for Bogor City for the period 2020-2022 was used as the training and testing dataset. The data was normalized using the sigmoid activation function to improve the network training performance. The network architecture consists of 12 input neurons, 10 hidden neurons, and 1 output neuron. The training results showed an error rate (Mean Squared Error) of 0.00090677 with a regression value of 0.99022, while the test results produced a regression of 0.98837. These findings indicate that the backpropagation method in ANN is able to predict rainfall effectively and accurately. This model can be further developed to predict other weather phenomena.

Downloads

Download data is not yet available.

Author Biographies

Eddy Ryansyah, University of Singaperbangsa Karawang

Informatics, University of Singaperbangsa Karawang

Muhammad Rusfauzi Surya, University of Singaperbangsa Karawang

Informatics, University of Singaperbangsa Karawang

Yuyun Umaidah, University of Singaperbangsa Karawang

Informatics, University of Singaperbangsa Karawang

References

A. Ravelliani and S. Salman, “Penyakit Influenza Berdasarkan Iklim di Indonesia: Literature Review,” J. Farmasetis, vol. 11, no. 3, pp. 209–214, 2022, [Online]. Available: https://journal2.stikeskendal.ac.id/index.php/far/article/view/499

M. Imron, M. S. Baskoro, D. R. Prima, and A. Suherman, “KOMPOSISI HASIL TANGKAPAN DAN POLA MUSIM PENANGKAPAN CANTRANG YANG DI DARATKAN DI PELABUHAN PERIKANAN PANTAI TEGALSARI, JAWA TENGAH,” Saintek Perikan. Indones. J. Fish. Sci. Technol., vol. 17, no. 2, pp. 138–145, Aug. 2021, doi: 10.14710/ijfst.17.2.138-145.

A. Angel, D. Dasrizal, and E. Juita, “Analisis Pengaruh Curah Hujan terhadap Hasil Pertanian Padi di Nagari Balimbing Kecamatan Rambatan Kabupaten Tanah Datar,” Indones. Res. J. Educ., vol. 5, no. 1, pp. 273–281, 2025.

R. Alamsyah, E. Ryansyah, A. Y. Permana, and R. Mufidah, “SISTEM PENYIRAMAN TANAMAN OTOMATIS MENGGUNAKAN LOGIKA FUZZY DENGAN TEKNOLOGI INTERNET OF THINGS BERBASIS ESP8266 DAN APLIKASI BLYNK,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 862–868, Apr. 2024, doi: 10.23960/jitet.v12i2.4007.

D. Sangaji and T. Sutabri, “Analisis XGBoost dan Random Forest untuk Prediksi Curah Hujan dalam Mendukung Mitigasi Karhutla,” J. Pustaka AI (Pusat Akses Kaji. Teknol. Artif. Intell., vol. 5, no. 1, pp. 13–18, Apr. 2025, doi: 10.55382/jurnalpustakaai.v5i1.905.

S. Hithama Hutabarat and F. Al-Islama Achyunda Putra, “PERBANDINGAN METODE EXPONENTIAL SMOOTHING DAN ARIMA PADA PERAMALAN CURAH HUJAN DI KOTA MALANG,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 4, pp. 7294–7300, May 2025, doi: 10.36040/jati.v9i4.14427.

J. Prasetya, B. Santoso, and S. Kacung, “PREDIKSI HARGA EMAS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION HYPERPARAMETER TUNING,” J. Inform. Teknol. dan Sains, vol. 7, no. 2, pp. 768–776, May 2025, doi: 10.51401/jinteks.v7i2.5739.

R. Gusriva and Y. M. Putra, “Model Prediksi Kerusakan Sepeda Motor Matic Menggunakan Jaringan Saraf Tiruan dan Metode Hebb’s Rule,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 6, no. 2, pp. 585–592, 2025, [Online]. Available: https://pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/601

S. Arti and E. Suherlan, “Evaluasi Kinerja Machine Learning dalam Memprediksi Kemampuan Adaptasi Mahasiswa pada Lingkungan Pembelajaran Daring,” J. Pustaka AI (Pusat Akses Kaji. Teknol. Artif. Intell., vol. 5, no. 1, pp. 50–57, Apr. 2025, doi: 10.55382/jurnalpustakaai.v5i1.901.

Budi Mulyono and Nursalim, “Prediksi Rentet Waktu Penjualan Barang Menggunakan Algoritma Backpropagation,” J. Kolaboratif Sains, vol. 6, no. 2, pp. 131–139, Feb. 2023, doi: 10.56338/jks.v6i2.3300.

S. F. Prasetyo, T. F. Efendi, and M. Muqorobin, “Implementasi Sistem Prediksi Curah Hujan Dengan Penerapan Jaringan Syaraf Tiruan Berbasis Website,” J. Ris. Tek. Komput., vol. 1, no. 2, pp. 80–96, 2024, [Online]. Available: https://journal.smartpublisher.id/index.php/jurtikom/article/view/110

L. H. Aguswandi, D. Syafitri, and T. T. Sujaka, “PEMODELAN PREDIKTIF MENGGUNAKAN ALGORITMA BACKPROPAGATION,” Pros. Semin. Nas. Teknol. Inovasi, dan Ekon., pp. 149–157, 2025, [Online]. Available: https://journal.universitasbumigora.ac.id/index.php/SETIE/article/view/5010

H. Hendy and A. A. Fajrin, “Framework Jaringan Syaraf Tiruan Dengan Algoritma Genetika Pada Pengenalan Iris Mata,” Comput. Sci. Ind. Eng., vol. 7, no. 2, pp. 70–81, 2022, [Online]. Available: https://forum.upbatam.ac.id/index.php/comasiejournal/article/view/5846

T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 7, no. 3, pp. 1101–1107, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12384

M. R. Siregar, A. P. Azhari, D. Hartama, and A. P. Windarto, “Peramalan Nilai Penjualan Gas Elpiji 3 Kg di Sumatera Utara dengan bantuan Analisis Metode Jaringan Saraf Tiruan,” Bull. Artif. Intell., vol. 1, no. 2, pp. 52–58, Oct. 2022, doi: 10.62866/buai.v1i2.51.

R. Alfalaq, I. Safitri, and S. Rizal, “Perancangan Dan Implementasi Image Enhancement Plat Nomor Kendaraan Dengan Membandingkan Metode Srcnn Dan Vdsr,” vol. 11, no. 4, pp. 2727–2734, 2024, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/24122

A. G. Visitama and H. Sabita, “Penjadwalan Matakuliah Dengan Menggunakan Metode Jaringan Neural Network (Studi Kasus IIB Darmajaya),” Tek. J. Ilm. Bid. Ilmu Rekayasa, vol. 18, no. 1, pp. 161–172, 2024, doi: 10.5281/zenodo.10879808.

Published

2025-09-30

Abstract views:

548

PDF Download:

261

DOI:

10.33998/jakakom.2025.5.2.2398

Dimension Badge: