Analisis Prediksi Kelulusan Mahasiswa Universitas Dinamika Bangsa Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.33998/jakakom.2025.5.1.1999Keywords:
Data Mining, Data Mining, Classification, Selling, Naïve Bayes.Abstract
In order to facilitate the learning process, Universitas Dinamika Bangsa (UNAMA) has a database. Every year, the alumni data gets larger, and the database can be used. Utilising alumni data involves classifying and analysing long-term study periods of Universitas Dinamika Bangsa (UNAMA) students using the naïve bayes method.The results of the naïve bayes classification in the student of information system with the highest accuracy are obtained by using the Use Training Set, which consists of 161 correctly classified instances and 39 incorrectly classified instances, with an accuracy percentage of 85% for correctly classified instances and 19.5% for incorrectly classified instances. The results of attribute selection using the Classifier Attribute Evaluation algorithm (ClassifierAttributeEval) indicate that IPK is the attribute that has the greatest influence on kelulusan speed. Akurasi in the model is calculated using a confusion matrix, and at the beginning of the data-data mahasiswa, there is a lot of noise, which is revealed through the data cleaning process. It is the process of reducing noise in data using Microsoft Excel, which the author typically uses to analyse data From of information System students. Overall accuracy is 77.5%, which is a very good accuracy when analysing training data.
Downloads
References
Y. Apridiansyah, et all., “Prediksi Kelulusan Mahasiswa Fakultas Teknik Informatika Universitas Muhammadiyah Bengkulu Menggunakan Metode Naive Bayes,” JSAI (Journal Sci. Appl. Informatics), vol. 4, no. 2, pp. 236–247, 2021, doi: 10.36085/jsai.v4i2.1701.
H. Hozairi, et all., “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.
T. M. Rahayu, B. A. Ningsi, Isnurani, and I. Arofah, “KLASIFIKASI KETEPATAN WAKTU KELULUSAN MAHASISWA DENGAN METODE NAÏVE BAYES Oleh,” vol. 15, no. 11, pp. 5651–5658, 2021.
A. F. Firdaus, et all., “Implementasi Metode Klasifikasi Naive Bayes Implementation of Naive Bayes Classification Method in Predicting,” vol. 8, no. 5, pp. 9274–9279, 2021.
D. Salmu, S. and A. Solichin, “Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu MenggunakanNaïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta Prediction of Timeliness Graduationof Students Using Naïve Bayes : A Case Study at Islamic State University Syarif HidayatullahJakarta,” Pros. Semin. Nas. Multidisiplin Ilmu, no. April, pp. 701–709, 2017.
Amelia, Mongan Winny, Lumenta, Arie S. M., & Jacobus, Agustinus. (2017). Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes. E-Journal Teknik Informatika. Vol 11, No.1 ISSN : 2301 – 8364
Rakhman, Arif. (2017), Prediksi Ketepatan Kelulusan Mahasiswa Menggunakan Metode Decision Tree Berbasis Particle Swarm Optimation. Smart Comp. Volume 6, No 1.
Risqiati & Ismanto, Bambang. (2017), Analisis Komparasi Algoritma Naive Bayes Dan C4-5 untuk Waktu Kelulusan Mahasiswa. IC-Tech. Volume XII, No. 1
Saifudin, Aries. (2018). Metode Data Mining untuk Seleksi Calon Mahasiswa pada Penerimaan Mahasiswa Baru di Universitas Pamulang. Jurnal Teknologi. Volume 10, No. 1
Darwin, D., & Zurimi, S. (2019). Analisis model aplikatif Multivariate Adaptive Regression Spline (MARS) terhadap klasifikasi faktor yang mempengaruhi masa studi mahasiswa FKIP Universitas Darussalam Ambon. Jurnal Simetrik, 9(2), 250–255. http://ejournal- polnam.ac.id/index.php/JurnalSimetrik/arti cle/viewFile/426/278
Duei Putri, D., Nama, G.F., & Sulistiono, W.E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan.
Al Maeni, N., Suarna, N., & Prihartono, W. (2024). ANALISIS SENTIMEN PENGGUNA SHOPEE BERDASARKAN DATA TWEET DARI TWITTER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER. JATI (Jurnal Mahasiswa Teknik Informatika).
Harun, R., Ishak, R., & Panna, S. (2023). Analisis Sentimen Opini Publik Pengguna Twitter Terhadap Kenaikan Harga BBM Menggunakan Algoritma Naïve Bayes. Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer.
Natasuwarna, A.P. (2019). ANALISIS SENTIMEN KEPUTUSAN PEMINDAHAN IBUKOTA NEGARA MENGGUNAKAN KLASIFIKASI NAIVE BAYES.
Chandra, D., Indrawan, G.S., & Sukaraja, I.N. (2016). Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram.
Adyatma Subagja, R., Widiastiwi, Y., & Chamidah, N. (2021). Klasifikasi Ulasan Aplikasi Jenius pada Google Play Store Menggunakan Algoritma Naive Bayes. Informatik : Jurnal Ilmu Komputer.
Puji Astuti, A., Alam, S., & Jaelani, I. (2022). Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo. Jurnal Bangkit Indonesia.