Integration of Viola Jones Method and Labeling Algorithm for Human Object Detection Accuracy
DOI:
https://doi.org/10.33998/processor.2024.19.2.1822Keywords:
Motion detection, viola jones, labelling, video, accuracyAbstract
Motion detection is a key element in modern surveillance systems to ensure optimal security. However, the accuracy of motion detection is often a challenge under various environmental conditions. This research investigates the use of the Viola-Jones method and labeling algorithm as a solution to improve object detection accuracy by sampling 15 videos that record various environmental conditions, including indoors, outdoors, and at night. The Viola-Jones method is implemented for face detection as a first step in human object identification, while the labeling algorithm is used to refine and validate the detection results in more detail. Experimental results show that combining the two methods succeeded in increasing object detection accuracy. Of the 15 videos analyzed, only 4 videos experienced inaccurate detection results, while the other 11 videos managed to get accurate results. Evaluation of system performance using Precision, Recall, and Accuracy metrics produces a Precision rate of 73.33%, a Recall rate of 100%, and an Accuracy rate of 73.33%. Apart from that, manual calculations were also carried out which resulted in an accuracy rate of 91.77%.
Downloads
References
D. N. Alfarizi, R. A. Pangestu, D. Aditya, M. A. Setiawan, and M. Penelitian, “Penggunaan Metode YOLO Pada Deteksi Objek : Sebuah Tinjauan Literatur Sistematis,” vol. 1, no. 1, pp. 54–63, 2023.
I. P. Dewi and R. Fikri, “Optimalisasi Keamanan Rumah dengan Implementasi Sistem Notifikasi Gerbang Cerdas Berbasis Internet of Things ( IoT ),” vol. 4, no. 4, pp. 816–829, 2023, doi: 10.47065/josyc.v4i4.4004.
J. Multidisiplin and S. Volume, “No Title,” vol. 2, no. 9, pp. 70–86, 2024.
P. Rosyani and R. Retnawati, “Ekstraksi Fitur Wajah Menggunakan Metode Viola Jones dengan Tools Cascade Detector,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 633, 2023, doi: 10.30865/jurikom.v10i2.6062.
Ardi wijaya, Puji Rahayu, and Rozali Toyib, “Analisis Algoritma Shi-Tomasi Dalam Pengujian Citra Senyum Pada Wajah Manusia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1036–1043, 2021, doi: 10.29207/resti.v5i6.3496.
Y. Apridiansyah and J. R. Gumiri, “Penerapan Metode Background Subtraction Untuk Deteksi Gerak Pada Kendaraan,” JUKOMIKA (Jurnal Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 47–56, 2021, doi: 10.54650/jukomika.v4i1.355.
E. T. Susdarwono, “ARTIFICIAL INTELLIGENCE ( AI ) DRONE DALAM PERTAHANAN : PROBLEM DAN KEMAJUAN,” vol. 3, no. 01, pp. 1–11, 2021.
T. A. Dompeipen and S. R. U. . Sompie, “Penerapan computer vision untuk pendeteksian dan penghitung jumlah manusia,” J. Tek. Inform., vol. 15, no. 4, pp. 1–12, 2020, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/informatika
I. B. A. Peling, M. P. A. Ariawan, G. B. Subiksa, and I. K. A. G. Wiguna, “Pendeteksi Keberadaan Orang Asing Menggunakan Face Recognition dan Motion Detection,” J. Bangkit Indones., vol. 13, no. 1, pp. 18–23, 2024, doi: 10.52771/bangkitindonesia.v13i1.275.
A. Hanafie, N. P. Husain, H. Kumkelo, and R. R. Putri, “Aplikasi Ekstraksi Wajah Menggunakan Algoritma Viola Jones,” ILTEK J. Teknol., vol. 18, no. 02, pp. 87–91, 2023, doi: 10.47398/iltek.v18i02.130.
D. Sepriana, K. Adi, and C. A. Widodo, “Menghitung Jumlah Sel Goblet Usus Ayam Secara Otomatis Dengan Metode Multilevel Thresholding,” vol. 5, pp. 154–161, 2023.
A. S. Riyadi, I. P. Wardhani, M. S. Wulandari, and S. Widayati, “Perbandingan Metode ResNet, YoloV3, dan TinyYoloV3 pada Deteksi Citra dengan Pemrograman Python,” Petir, vol. 15, no. 1, pp. 135–144, 2022, doi: 10.33322/petir.v15i1.1302.
G. Julia and N. Putri, “Metode Background Substraction Untuk Monitoring Obyek Bergerak Melalui Kamera Webcam,” J. Mhs. Tek. Inform., vol. 3, no. 1, pp. 110–116, 2019.
K. Pada and I. Continuous, Digitally signed by Halim Mudia. 2021.
M. A. Surya, M. Susanto, A. Setyawan, H. Fitriawan, and Mardiana, “Sistem Keamanan Ruangan Dengan Human Detection Menggunakan Sensor Kamera Berbasis Deep Learning,” J. Teknoinfo, vol. 18, no. 1, pp. 182–192, 2024, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index