V2V Communication in Smart Traffic Systems: Current status, challenges and future perspectives

Authors

  • Ketut Bayu Yogha Bintoro Universitas Trilogi
  • SDH Permana Universitas Trilogi
  • Ade Syahputra Universitas Trilogi
  • Yaddarabullah Universitas Trilogi
  • Budi Arifitama Universitas Trilogi

DOI:

https://doi.org/10.33998/processor.2024.19.1.1524

Abstract

Implementing V2V communication in intelligent traffic systems has been a topic of growing interest due to its potential to improve road safety and traffic flow. However, the widespread adoption of V2V communication in intelligent traffic systems could be enhanced by various challenges, such as infrastructure cost, security, and interoperability. These challenges must be addressed to improve the potential benefits of V2V communication. The problem statement of this study is to examine the potential benefits and challenges of V2V communication in intelligent traffic systems and provide insights into the current state of the art in V2V communication research. The proposed approach is to conduct a literature review of recent research on V2V communication in intelligent traffic systems to identify the potential benefits and challenges of V2V communication and the current state of the art in V2V communication research. The study aims to contribute to the field by comprehensively understanding the implementation of V2V communication in intelligent traffic systems and informing potential future research in this area. V2V communication can improve road safety and traffic flow in intelligent traffic systems. However, more research is needed to address the challenges and develop advanced and cost-effective V2V communication systems.

Downloads

Download data is not yet available.

References

M. Zhu, X. Wang, and J. Hu, “Impact on car following behavior of a forward collision warning system with headway monitoring,” Transp. Res. Part C Emerg. Technol., vol. 111, no. December 2019, pp. 226–244, 2020, doi: 10.1016/j.trc.2019.12.015. DOI:10.1016/j.trc.2019.12.015 https://doi.org/10.1016/j.trc.2019.12.015

H. A. Ameen, A. K. Mahamad, S. Saon, D. M. Nor, and K. Ghazi, “A review on vehicle to vehicle communication system applications,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 1, pp. 188–198, 2019, doi: 10.11591/ijeecs.v18.i1.pp188-198. DOI:10.11591/ijeecs.v18.i1.pp188-198

N. Wang, X. Wang, P. Palacharla, and T. Ikeuchi, “Cooperative autonomous driving for traffic congestion avoidance through vehicle-to-vehicle communications,” IEEE Veh. Netw. Conf. VNC, vol. 2018-Janua, pp. 327–330, 2018, doi: 10.1109/VNC.2017.8275620. DOI:10.1109/VNC.2017.8275620

E. C. Eze, S. Zhang, and E. Liu, “Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward,” ICAC 2014 - Proc. 20th Int. Conf. Autom. Comput. Futur. Autom. Comput. Manuf., no. September, pp. 176–181, 2014, doi: 10.1109/IConAC.2014.6935482. DOI:10.1109/IConAC.2014.6935482

M. Yousef, “Dual-mode forward collision avoidance algorithm based on vehicle-to-vehicle (V2V) communication,” Midwest Symposium on Circuits and Systems, vol. 2018. pp. 739–742, 2019. doi: 10.1109/MWSCAS.2018.8623896. DOI:10.1109/MWSCAS.2018.8623896 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060256395&origin=inward

H. A. Ameen et al., “A Deep Review and Analysis of Data Exchange in Vehicle-to-Vehicle Communications Systems: Coherent Taxonomy, Challenges, Motivations, Recommendations, Substantial Analysis and Future Directions,” IEEE Access, vol. 7, pp. 158349–158378, 2019, doi: 10.1109/ACCESS.2019.2949130. DOI:10.1109/ACCESS.2019.2949130

B. Benzaman and D. Sharma, “Discrete event simulation of a road intersection integrating V2V and V2I features to improve traffic flow,” 2017 Winter Simulation Conference (WSC). IEEE, 2017. doi: 10.1109/wsc.2017.8248026. DOI:10.1109/wsc.2017.8248026 http://dx.doi.org/10.1109/wsc.2017.8248026

D. Li, L. Deng, Z. Cai, B. Franks, and X. Yao, “Intelligent Transportation System in Macao Based on Deep Self-Coding Learning,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3253–3260, 2018, doi: 10.1109/TII.2018.2810291. DOI:10.1109/TII.2018.2810291

J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated vehicles: State of the art and future challenges,” Annu. Rev. Control, vol. 45, no. May, pp. 18–40, 2018, doi: 10.1016/j.arcontrol.2018.04.011. DOI:10.1016/j.arcontrol.2018.04.011 https://doi.org/10.1016/j.arcontrol.2018.04.011

P. K. Singh, S. K. Nandi, and S. Nandi, “A tutorial survey on vehicular communication state of the art, and future research directions,” Veh. Commun., vol. 18, p. 100164, 2019, doi: 10.1016/j.vehcom.2019.100164. DOI:10.1016/j.vehcom.2019.100164 https://doi.org/10.1016/j.vehcom.2019.100164

M. Giordani, “On the Feasibility of Integrating mmWave and IEEE 802.11p for V2V Communications,” IEEE Vehicular Technology Conference, vol. 2018. 2018. doi: 10.1109/VTCFall.2018.8690697. DOI:10.1109/VTCFall.2018.8690697 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064916284&origin=inward

S. Eckelmann, T. Trautmann, H. Ußler, B. Reichelt, and O. Michler, “V2V-Communication, LiDAR System and Positioning Sensors for Future Fusion Algorithms in Connected Vehicles,” Transp. Res. Procedia, vol. 27, pp. 69–76, 2017, doi: 10.1016/j.trpro.2017.12.032. DOI:10.1016/j.trpro.2017.12.032 https://doi.org/10.1016/j.trpro.2017.12.032

S. Choudhary and K. Purohit, “VANET: Its applications, security requirements, types of attacks and its corrective measures,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018, pp. 883–888, 2019, doi: 10.1109/GUCON.2018.8674976. DOI:10.1109/GUCON.2018.8674976

A. Demba, “Vehicle-to-Vehicle Communication Technology,” no. 1, pp. 459–465, 2018.

A. Nshimiyimana, “Comprehensive survey of V2V communication for 4G mobile and wireless technology,” Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2016. pp. 1722–1726, 2016. doi: 10.1109/WiSPNET.2016.7566433. DOI:10.1109/WiSPNET.2016.7566433 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992051930&origin=inward

Z. Wang, L. Leng, S. Wang, G. Li, and Y. Zhao, “A Hyperheuristic Approach for Location-Routing Problem of Cold Chain Logistics considering Fuel Consumption,” Comput. Intell. Neurosci., vol. 2020, 2020, doi: 10.1155/2020/8395754. DOI:10.1155/2020/8395754

Z. Shouran, A. Ashari, and T. Kuntoro, “Internet of Things (IoT) of Smart Home: Privacy and Security,” Int. J. Comput. Appl., vol. 182, no. 39, pp. 3–8, 2019, doi: 10.5120/ijca2019918450. DOI:10.5120/ijca2019918450

C.-W. Lin and A. Sangiovanni-Vincentelli, “Security-Aware Design for V2V Communication,” Security-Aware Design for Cyber-Physical Systems. Springer International Publishing, pp. 77–86, 2017. doi: 10.1007/978-3-319-51328-7_7. DOI:10.1007/978-3-319-51328-7_7 http://dx.doi.org/10.1007/978-3-319-51328-7_7

C. Wang, R. Song, and Z. Liu, “Simulation of Vehicle Network Communication Security Based on Random Geometry and Data Mining,” IEEE Access, vol. 8, pp. 69389–69400, 2020, doi: 10.1109/ACCESS.2020.2986338. DOI:10.1109/ACCESS.2020.2986338

S. Tsurumi and T. Fujii, “Reliable vehicle-to-vehicle communication using spectrum environment map,” Int. Conf. Inf. Netw., vol. 2018-Janua, pp. 310–315, 2018, doi: 10.1109/ICOIN.2018.8343131. DOI:10.1109/ICOIN.2018.8343131

G. Orosz, “Connected automated vehicle design among human-driven vehicles,” IFAC-PapersOnLine, vol. 51, no. 34, pp. 403–406, 2019, doi: 10.1016/j.ifacol.2019.01.005. DOI:10.1016/j.ifacol.2019.01.005

M. M. Hamdi, L. Audah, S. A. Rashid, A. H. Mohammed, S. Alani, and A. S. Mustafa, “A Review of Applications, Characteristics and Challenges in Vehicular Ad Hoc Networks (VANETs),” HORA 2020 - 2nd Int. Congr. Human-Computer Interact. Optim. Robot. Appl. Proc., 2020, doi: 10.1109/HORA49412.2020.9152928. DOI:10.1109/HORA49412.2020.9152928

P. S. Narayanan and C. S. Joice, “Vehicle-to-Vehicle (V2V) Communication using Routing Protocols: A Review,” 2019 International Conference on Smart Structures and Systems (ICSSS). IEEE, 2019. doi: 10.1109/icsss.2019.8882828. DOI:10.1109/icsss.2019.8882828 http://dx.doi.org/10.1109/icsss.2019.8882828

Y. Sun, H. Ge, and R. Cheng, “An extended car-following model under V2V communication environment and its delayed-feedback control,” Phys. A Stat. Mech. its Appl., vol. 508, pp. 349–358, 2018, doi: 10.1016/j.physa.2018.05.102. DOI:10.1016/j.physa.2018.05.102 https://doi.org/10.1016/j.physa.2018.05.102

B. Lakshmipraba and V. G. Sivakumar, “IoT in connected cars: Challenges and chances,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 6620–6629, 2019, doi: 10.35940/ijeat.A1859.109119. DOI:10.35940/ijeat.A1859.109119

R. B. Koti and M. S. Kakkasageri, “Intelligent safety information dissemination scheme for V2V communication in VANETs,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, pp. 1–6, 2019, doi: 10.1109/ICSCAN.2019.8878862. DOI:10.1109/ICSCAN.2019.8878862

F. E. Gunawan, B. Soewito, N. Surantha, T. Mauritsius, and N. Sekishita, “A study of the sensitivity of the fuel consumption to driving strategy by micro simulation,” Procedia Comput. Sci., vol. 157, pp. 375–381, 2019, doi: 10.1016/j.procs.2019.08.228. DOI:10.1016/j.procs.2019.08.228 https://doi.org/10.1016/j.procs.2019.08.228

T. Wang, J. Zhao, and P. Li, “An extended car-following model at un-signalized intersections under V2V communication environment,” PLoS One, vol. 13, no. 2, pp. 1–14, 2018, doi: 10.1371/journal.pone.0192787. DOI:10.1371/journal.pone.0192787

K. Ashok et al., “Review on Energy Efficient V2V Communication Techniques for a Dynamic and Congested Traffic Environment,” 2022 Int. Conf. Comput. Commun. Informatics, ICCCI 2022, pp. 0–5, 2022, doi: 10.1109/ICCCI54379.2022.9740853. DOI:10.1109/ICCCI54379.2022.9740853

M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Secure V2V and V2I Communication in Intelligent Transportation using Cloudlets,” IEEE Trans. Serv. Comput., vol. 1374, no. c, pp. 1–1, 2020, doi: 10.1109/tsc.2020.3025993. DOI:10.1109/tsc.2020.3025993

B. Anand, V. Barsaiyan, M. Senapati, and P. Rajalakshmi, “Real time LiDAR point cloud compression and transmission for intelligent transportation system,” IEEE Veh. Technol. Conf., vol. 2019-April, pp. 1–5, 2019, doi: 10.1109/VTCSpring.2019.8746417. DOI:10.1109/VTCSpring.2019.8746417

Q. Wang, C. Li, H. Jin, and C. Qi, “Mutually Beneficial Cooperative Driving to Solve Traffic Congestion through V2V Communication,” Int. Conf. ICT Converg., vol. 2022-Octob, no. 202211117070, pp. 118–122, 2022, doi:

1109/ICTC55196.2022.9952801. DOI:10.1109/ICTC55196.2022.9952801

A. Demba and D. P. F. Moller, “Vehicle-to-Vehicle Communication Technology,” IEEE Int. Conf. Electro Inf. Technol., vol. 2018-May, no. 1, pp. 459–464, 2018, doi: 10.1109/EIT.2018.8500189. DOI:10.1109/EIT.2018.8500189

H. Zheng, J. Wu, W. Wu, and R. R. Negenborn, “Cooperative distributed predictive control for collision-free vehicle platoons,” IET Intell. Transp. Syst., vol. 13, no. 5, pp. 816–824, 2019, doi: 10.1049/iet-its.2018.5366. DOI:10.1049/iet-its.2018.5366

N. G. Ghatwai, V. K. Harpale, and M. Kale, “Vehicle To vehicle communication for crash avoidance system,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, pp. 1–3, 2017, doi: 10.1109/ICCUBEA.2016.7860118. DOI:10.1109/ICCUBEA.2016.7860118

T. Peng et al., “A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles,” Expert Syst. Appl., vol. 141, 2020, doi: 10.1016/j.eswa.2019.112953. DOI:10.1016/j.eswa.2019.112953

J. B. Pinto Neto et al., “An accurate cooperative positioning system for vehicular safety applications,” Comput. Electr. Eng., vol. 83, 2020, doi: 10.1016/j.compeleceng.2020.106591. DOI:10.1016/j.compeleceng.2020.106591

M. Ali, A. W. Malik, A. U. Rahman, S. Iqbal, and M. M. Hamayun, “Position-based emergency message dissemination for Internet of vehicles,” Int. J. Distrib. Sens. Networks, vol. 15, no. 7, 2019, doi: 10.1177/1550147719861585. DOI:10.1177/1550147719861585

S. islam Bouderba and N. Moussa, “Impact of green wave traffic light system on V2V communications,” 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). IEEE, 2018. doi: 10.1109/wincom.2018.8629638. DOI:10.1109/wincom.2018.8629638 http://dx.doi.org/10.1109/wincom.2018.8629638

E. Van Nunen, J. Verhaegh, E. Silvas, E. Semsar-Kazerooni, and N. Van De Wouw, “Robust model predictive cooperative adaptive cruise control subject to V2V impairments,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2018-March, pp. 1–8, 2018, doi: 10.1109/ITSC.2017.8317758. DOI:10.1109/ITSC.2017.8317758

L. Juárez and S. Mondié, “Dynamic Predictor-based Extended Cooperative Adaptive Cruise Control,” IFAC-PapersOnLine, vol. 52, no. 18, pp. 7–12, 2019, doi: 10.1016/j.ifacol.2019.12.198. DOI:10.1016/j.ifacol.2019.12.198

I. Wahid, A. A. Ikram, M. Ahmad, S. Ali, and A. Ali, “State of the Art Routing Protocols in VANETs: A Review,” Procedia Comput. Sci., vol. 130, pp. 689–694, 2018, doi: 10.1016/j.procs.2018.04.121. DOI:10.1016/j.procs.2018.04.121 https://doi.org/10.1016/j.procs.2018.04.121

P. Liu, A. Kurt, and U. Ozguner, “Distributed Model Predictive Control for Cooperative and Flexible Vehicle Platooning,” IEEE Trans. Control Syst. Technol., vol. 27, no. 3, pp. 1115–1128, 2019, doi: 10.1109/TCST.2018.2808911. DOI:10.1109/TCST.2018.2808911

S. Maiti, S. Winter, and L. Kulik, “A conceptualization of vehicle platoons and platoon operations,” Transp. Res. Part C Emerg. Technol., vol. 80, pp. 1–19, 2017, doi: 10.1016/j.trc.2017.04.005. DOI:10.1016/j.trc.2017.04.005 http://dx.doi.org/10.1016/j.trc.2017.04.005

Q. Xin, R. Fu, W. Yuan, Q. Liu, and S. Yu, “Predictive intelligent driver model for eco-driving using upcoming traffic signal information,” Phys. A Stat. Mech. its Appl., vol. 508, pp. 806–823, 2018, doi: 10.1016/j.physa.2018.05.138. DOI:10.1016/j.physa.2018.05.138 https://doi.org/10.1016/j.physa.2018.05.138

Y. Lou, “A distributed framework for network-wide traffic monitoring and platoon information aggregation using V2V communications,” Transp. Res. Part C Emerg. Technol., vol. 69, pp. 356–374, 2016, doi: 10.1016/j.trc.2016.06.003. DOI:10.1016/j.trc.2016.06.003 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976559923&origin=inward

N. R. Moloisane, R. Malekian, and D. Capeska Bogatinoska, “Wireless machine-to-machine communication for intelligent transportation systems: Internet of vehicles and vehicle to grid,” 2017 40th Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2017 - Proc., pp. 411–415, 2017, doi: 10.23919/MIPRO.2017.7973459. DOI:10.23919/MIPRO.2017.7973459

V. Rajaram and S. C. Subramanian, “Heavy vehicle collision avoidance control in heterogeneous traffic using varying time headway,” Mechatronics, vol. 50, no. March 2017, pp. 328–340, 2018, doi: 10.1016/j.mechatronics.2017.11.010. DOI:10.1016/j.mechatronics.2017.11.010 https://doi.org/10.1016/j.mechatronics.2017.11.010

H. Liu, X. Y. Lu, and S. E. Shladover, “Traffic signal control by leveraging Cooperative Adaptive Cruise Control (CACC) vehicle platooning capabilities,” Transp. Res. Part C Emerg. Technol., vol. 104, no. May, pp. 390–407, 2019, doi: 10.1016/j.trc.2019.05.027. DOI:10.1016/j.trc.2019.05.027 https://doi.org/10.1016/j.trc.2019.05.027

S. Yim, “Preview Controller Design for Vehicle Stability with V2V Communication,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1497–1506, 2017, doi: 10.1109/TITS.2016.2607283. DOI:10.1109/TITS.2016.2607283

L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big Data Analytics in Intelligent Transportation Systems: A Survey,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 383–398, 2019, doi: 10.1109/TITS.2018.2815678. DOI:10.1109/TITS.2018.2815678

J. J. Roldán-Gómez, “SwarmCity project: monitoring traffic, pedestrians, climate, and pollution with an aerial robotic swarm: Data collection and fusion in a smart city, and its representation using virtual reality,” Pers. Ubiquitous Comput., 2020, doi: 10.1007/s00779-020-01379-2. DOI:10.1007/s00779-020-01379-2 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081906360&origin=inward

Z. Huang, D. Chu, C. Wu, and Y. He, “Path Planning and Cooperative Control for Automated Vehicle Platoon Using Hybrid Automata,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3, pp. 959–974, 2019, doi: 10.1109/TITS.2018.2841967. DOI:10.1109/TITS.2018.2841967

M. Saraoglu, F. Hart, A. Morozov, and K. Janschek, “Fault-Tolerant Path Planning in Networked Vehicle Systems in Presence of Communication Failures,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 82–87, 2018, doi: 10.1016/j.ifacol.2018.12.015. DOI:10.1016/j.ifacol.2018.12.015 https://doi.org/10.1016/j.ifacol.2018.12.015

A. H. El Fawal, A. Mansour, and M. Najem, “V2V Influence on M2M and H2H Traffics During Emergency Scenarios,” Global Advancements in Connected and Intelligent Mobility. IGI Global, pp. 93–134, 2020. doi: 10.4018/978-1-5225-9019-4.ch003. DOI:10.4018/978-1-5225-9019-4.ch003 http://dx.doi.org/10.4018/978-1-5225-9019-4.ch003

S. C. Calvert, G. Klunder, J. L. L. Steendijk, and M. Snelder, “The impact and potential of cooperative and automated driving for intelligent traffic signal corridors: A field-operational-test and simulation experiment,” Case Stud. Transp. Policy, vol. 8, no. 3, pp. 901–919, 2020, doi: 10.1016/j.cstp.2020.05.011. DOI:10.1016/j.cstp.2020.05.011 https://doi.org/10.1016/j.cstp.2020.05.011

A. Daniel, A. Paul, A. Ahmad, and S. Rho, “Cooperative Intelligence of Vehicles for Intelligent Transportation Systems (ITS),” Wirel. Pers. Commun., vol. 87, no. 2, pp. 461–484, 2016, doi: 10.1007/s11277-015-3078-7. DOI:10.1007/s11277-015-3078-7

P. Choudhary and Umang, “A literature review on vehicular AdHoc network for intelligent transport,” 2015 Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2015, pp. 2209–2213, 2015.

T. K. Bhatia, R. K. Ramachandran, R. Doss, and L. Pan, “A Survey on Controlling the Congestion in Vehicleto-Vehicle Communication,” pp. 573–578, 2020, doi: 10.1109/icrito48877.2020.9197884. DOI:10.1109/icrito48877.2020.9197884

S. Kumar, S. Jha, S. K. Pandey, and A. Chattopadhyay, “A Security Model for Intelligent Vehicles and Smart Traffic Infrastructure,” IEEE Intell. Veh. Symp. Proc., vol. 2018-June, no. Iv, pp. 162–167, 2018, doi: 10.1109/IVS.2018.8500423. DOI:10.1109/IVS.2018.8500423

A. Gharsallah, “A seamless mobility mechanism for V2V communications,” Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, vol. 2017. pp. 1063–1069, 2018. doi: 10.1109/AICCSA.2017.109. DOI:10.1109/AICCSA.2017.109 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046090789&origin=inward

H. Y. Lin, M. Y. Hsieh, and K. C. Li, “The secure vehicle-to-vehicle and vehicle-to-group communication mechanisms in smart city,” Proc. - IEEE 4th Int. Conf. Big Data Comput. Serv. Appl. BigDataService 2018, pp. 186–192, 2018, doi: 10.1109/BigDataService.2018.00035. DOI:10.1109/BigDataService.2018.00035

T. Hirose, Y. Ohtsuka, and M. Gokan, “Activation Timing of a Collision Avoidance System with V2V Communication,” SAE Technical Paper Series. SAE International, 2017. doi: 10.4271/2017-01-0039. DOI:10.4271/2017-01-0039 http://dx.doi.org/10.4271/2017-01-0039

W. Liang, Z. Li, H. Zhang, Y. Sun, and R. Bie, “Vehicular ad hoc networks: Architectures, Research issues, Challenges and trends,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8491, pp. 102–113, 2014, doi: 10.1155/2015/745303. DOI:10.1155/2015/745303

S. Sharma and P. Sharma, “Comprehensive Study of Various Routing Protocols in VANET,” no. Iciccs, pp. 1272–1275, 2020, doi: 10.1109/iccs45141.2019.9065878. DOI:10.1109/iccs45141.2019.9065878

H. P. D. Nguyen and R. Zoltán, “The Current Security Challenges of Vehicle Communication in the Future Transportation System,” SISY 2018 - IEEE 16th Int. Symp. Intell. Syst. Informatics, Proc., pp. 161–165, 2018, doi: 10.1109/SISY.2018.8524773. DOI:10.1109/SISY.2018.8524773

P. Kumar, A. Verma, and P. Singhal, “VANET protocols with challenges- A review,” Proc. 2019 6th Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2019, pp. 598–602, 2019.

C. Letter and L. Elefteriadou, “Efficient control of fully automated connected vehicles at freeway merge segments,” Transp. Res. Part C Emerg. Technol., vol. 80, pp. 190–205, 2017, doi: 10.1016/j.trc.2017.04.015. DOI:10.1016/j.trc.2017.04.015 http://dx.doi.org/10.1016/j.trc.2017.04.015

T. K. Priyambodo, D. Wijayanto, and M. S. Gitakarma, “Performance optimization of MANET networks through routing protocol analysis,” Computers, vol. 10, no. 1, pp. 1–13, 2021, doi: 10.3390/computers10010002. DOI:10.3390/computers10010002

D. Kumar Singh and R. Sobti, “Long-range real-time monitoring strategy for Precision Irrigation in urban and rural farming in society 5.0,” Comput. Ind. Eng., vol. 167, no. February, p. 107997, 2022, doi: 10.1016/j.cie.2022.107997. DOI:10.1016/j.cie.2022.107997 https://doi.org/10.1016/j.cie.2022.107997

H. Ouamna, Z. Madini, and Y. Zouine, “Review article: Optimization of a V2V communication in cognitive radio context,” 2021 Int. Conf. Optim. Appl. ICOA 2021, pp. 2–7, 2021, doi: 10.1109/ICOA51614.2021.9442643. DOI:10.1109/ICOA51614.2021.9442643

A. Vinel, “Modeling of V2V Communications for C-ITS Safety Applications: A CPS Perspective,” IEEE Commun. Lett., vol. 22, no. 8, pp. 1600–1603, 2018, doi: 10.1109/LCOMM.2018.2835484. DOI:10.1109/LCOMM.2018.2835484 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046829629&origin=inward

R. Tripathy, J. Harmalkar, and A. Kumar, “A functionally safe dual-bus platoon architecture for future smart cities,” Proc. Int. Conf. Trends Electron. Informatics, ICOEI 2019, vol. 2019-April, no. Icoei, pp. 682–686, 2019, doi: 10.1109/icoei.2019.8862618. DOI:10.1109/icoei.2019.8862618

H. Vasudev, “A lightweight authentication protocol for V2V Communication in VANETs,” Proceedings - 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCo. pp. 1237–1242, 2018. doi: 10.1109/SmartWorld.2018.00215. DOI:10.1109/SmartWorld.2018.00215 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060277536&origin=inward

Y. Bian, Y. Zheng, W. Ren, S. E. Li, J. Wang, and K. Li, “Reducing time headway for platooning of connected vehicles via V2V communication,” Transp. Res. Part C Emerg. Technol., vol. 102, no. March, pp. 87–105, 2019, doi: 10.1016/j.trc.2019.03.002. DOI:10.1016/j.trc.2019.03.002 https://doi.org/10.1016/j.trc.2019.03.002

M. Cheong, “Analysis of V2V communication for ADAS,” International Conference on Ubiquitous and Future Networks, ICUFN. pp. 284–286, 2017. doi: 10.1109/ICUFN.2017.7993794. DOI:10.1109/ICUFN.2017.7993794 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028075196&origin=inward

J. Liu, B. Pattel, A. S. Desai, E. Hodzen, and H. Borhan, “Fuel Efficient Control Algorithms for Connected and Automated Line-Haul Trucks,” CCTA 2019 - 3rd IEEE Conf. Control Technol. Appl., pp. 730–737, 2019, doi: 10.1109/CCTA.2019.8920650. DOI:10.1109/CCTA.2019.8920650

G. J. Horng, “The cooperative on-street parking space searching mechanism in city environments,” Comput. Electr. Eng., vol. 74, pp. 349–361, 2019, doi: 10.1016/j.compeleceng.2019.02.010. DOI:10.1016/j.compeleceng.2019.02.010 https://doi.org/10.1016/j.compeleceng.2019.02.010

J. R. Grosh, “Multi-human Management of Robotic Swarms,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12182. pp. 603–619, 2020. doi: 10.1007/978-3-030-49062-1_41. DOI:10.1007/978-3-030-49062-1_41 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088750015&origin=inward

Y. Adachi, H. Yamaguchi, T. Higashino, and T. Umedu, “Cloud-assisted dynamic content sharing among vehicles,” Proc. - 2016 16th IEEE Int. Conf. Comput. Inf. Technol. CIT 2016, 2016 6th Int. Symp. Cloud Serv. Comput. IEEE SC2 2016 2016 Int. Symp. Secur. Priv. Soc. Netwo, pp. 516–523, 2017, doi: 10.1109/CIT.2016.49. DOI:10.1109/CIT.2016.49

K. S. H. Putri and U. K. Usman, “Analysis of Vehicle to Vehicle Communication Parameter on 5G Network,” 3rd Symp. Futur. Telecommun. Technol. SOFTT 2019, pp. 0–5, 2019, doi: 10.1109/SOFTT48120.2019.9068620. DOI:10.1109/SOFTT48120.2019.9068620

I. Mavromatis, “Efficient V2V communication scheme for 5G mmWave hyper-connected CAVs,” 2018 IEEE International Conference on Communications Workshops, ICC Workshops 2018 - Proceedings. pp. 1–6, 2018. doi: 10.1109/ICCW.2018.8403780. DOI:10.1109/ICCW.2018.8403780 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050301542&origin=inward

S. Hakak et al., “Autonomous Vehicles in 5G and Beyond: A Survey,” Veh. Commun., vol. 39, p. 100551, 2022, doi: 10.1016/j.vehcom.2022.100551. DOI:10.1016/j.vehcom.2022.100551 http://arxiv.org/abs/2207.10510

P. S. Waraich and N. Batra, “Prevention of denial of service attack over vehicle ad hoc networks using quick response table,” 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017, vol. 2017-Janua, pp. 586–591, 2017, doi: 10.1109/ISPCC.2017.8269746. DOI:10.1109/ISPCC.2017.8269746

A. Vasili and W. A. Moreno, “Applications and trends in connected vehicles: Debates and conclusions,” 2019 8th IEEE Int. Conf. Connect. Veh. Expo, ICCVE 2019 - Proc., 2019, doi: 10.1109/ICCVE45908.2019.8965236. DOI:10.1109/ICCVE45908.2019.8965236

Downloads

Published

2024-05-03

Abstract views:

131

PDF Download:

112

DOI:

10.33998/processor.2024.19.1.1524

Dimension Badge:

How to Cite

Yogha Bintoro, K. B., SDH Permana, Ade Syahputra, Yaddarabullah, & Budi Arifitama. (2024). V2V Communication in Smart Traffic Systems: Current status, challenges and future perspectives. Jurnal PROCESSOR, 19(1). https://doi.org/10.33998/processor.2024.19.1.1524