Improving Naïve Bayes Performance with Information Gain Using Machine Learning for Breast Cancer Classification
Peningkatan Performa Naïve Bayes dengan Information Gain Menggunakan Machine Learning untuk Klasifikasi Kanker Payudara
DOI:
https://doi.org/10.33998/jms.2025.5.2.2338Keywords:
Naïve Bayes; Information Gain; Classification; Breast CancerAbstract
This study aims to enhance the performance of the Naïve Bayes algorithm in breast cancer diagnosis classification by integrating the Information Gain feature selection method. The dataset used is the Wisconsin Breast Cancer (Diagnostic) dataset, consisting of 569 samples. This study evaluates the effectiveness of feature selection in improving the accuracy, sensitivity, and specificity of the classification model. The implementation of the Information Gain feature selection method successfully increased the Naïve Bayes model's accuracy from 94.15% to 96.49%, a 2.34% improvement. The addition of feature selection significantly enhanced the predictive capability of the model. The findings of this study can support more accurate medical decision-making, potentially influencing treatment decisions and patient outcomes in clinical practice. This research provides new insights into the application of machine learning in medical diagnostics and suggests directions for future research.
Downloads
References
A. J. W. Amna, Wahyuddin S, I Gede Iwan Sudipa, Tri Andi E. Putra, Buku Data Mining. 2023. [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
B. Raharjo, Buku Pembelajaran Mesin (Machine Learning). 2021. [Online]. Available: https://www.codepolitan.com/mengenal-teknologi-machine-learning-pembelajaran-mesin
R. K. Dinata, “Buku Machine Learning.” pp. 1–156, 2020.
J. Narabel and S. Budi, “Deteksi Dini Status Keanggotaan Industri Kebugaran Menggunakan Pendekatan Supervised Learning,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 266–277, 2020, doi: 10.28932/jutisi.v6i2.2675.
Ardi Ramdani, Christian Dwi Sofyan, Fauzi Ramdani, Muhamad Fauzi Arya Tama, and Muhammad Angga Rachmatsyah, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Masyarakat Dalam Menerima Bantuan Sosial,” J. Ilm. Sist. Inf., vol. 1, no. 2, pp. 39–47, 2022, doi: 10.51903/juisi.v1i2.363.
J. Kusumawaty, E. Noviati, I. Sukmawati, Y. Srinayanti, and Y. Rahayu, “Efektivitas Edukasi SADARI (Pemeriksaan Payudara Sendiri) Untuk Deteksi Dini Kanker Payudara,” ABDIMAS J. Pengabdi. Masy., vol. 4, no. 1, pp. 496–501, 2021, doi: 10.35568/abdimas.v4i1.1177.
Asiva Noor Rachmayani, Buku Data Mining Algoritma C4.5. 2019.
F. Handayani, D. Feddy, and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110,” J. Tek. Elektro, vol. 7, no. 1, pp. 19–24, 2015.
M. R. Maulana and M. A. Al Karomi, “Information Gain Untuk Mengetahui Pengaruh Atribut,” J. Litbang Kota Pekalongan, vol. 9, pp. 113–123, 2015.
F. D. Astuti, “Seleksi Atribut Menggunakan Information Gain Untuk Clustering Penduduk Miskin Dengan Validity Index Xie Beni,” Teknika, vol. 6, no. 1, pp. 61–65, 2017, doi: 10.34148/teknika.v6i1.58.
M. T. A. Herfandi, Zaen, Y. Yuliadi, M. Julkarnain, and F. Hamdani, “Application of Information Gain to Select Attributes in Improving Naïve Bayes Accuracy in Predicting Customer’s Payment Capability,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 2, pp. 155–163, 2021, doi: 10.31326/jisa.v4i2.1044.
A. Nugroho, “Analisa Splitting Criteria Pada Decision Tree dan Random Forest untuk Klasifikasi Evaluasi Kendaraan,” JSITIK J. Sist. Inf. dan Teknol. Inf. Komput., vol. 1, no. 1, pp. 41–49, 2022, doi: 10.53624/jsitik.v1i1.154.
R. F. Putra, I. R. Mukhlis, A. I. Datya, and S. J. Pipin, BUKU ALGORITMA PEMBELAJARAN MESIN. 2024.
J. T. Santoso, Buku Proyek Coding dengan Python. 2022.
L. D. Utami et al., “Integrasi Metode Information Gain untuk Seleksi Fitur dan AdaBoost untuk Mengurangi Bias pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naive Bayes,” J. Intell. Syst., vol. 1, no. 2, pp. 120–126, 2015.
M. Ramanda Hasibuan and Marjin, “Pemilihan Fitur dengan Information Gain untuk Klasifikasi Penyakit Gagal Ginjal menggunakan Metode Modified K-Nearest Neighbor (MKNN),” J. Pengemb. Teknol. Inf. dam Ilmu Komput., vol. 3, no. 11, pp. 3659–875, 2019, [Online]. Available: http://j-ptiik.ub.ac.id
A. Budianita, “Information Gain Berbasis Algoritma Naive Bayes Classifier Pada Pemodelan Prediksi Kelulusan,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 1, pp. 1–10, 2023, doi: 10.46772/intech.v5i1.1116.
E. Rahmanita, Y. D. P. Negara, Y. Kustiyahningsih, V. Sasmeka, and B. K. Khotimah, “Implementasi Metode Naïve Bayes dan Information Gain Untuk Klasifikasi Penyakit dan Hama Tanaman Jagung,” Teknika, vol. 12, no. 3, pp. 198–204, 2023, doi: 10.34148/teknika.v12i3.684.
A. Isnanda, Y. Umaidah, and J. H. Jaman, “Implementasi Naïve Bayes Classifier Dan Information Gain Pada Analisis Sentimen Penggunaan E-Wallet Saat Pandemi,” J. Teknol. Inform. dan Komput., vol. 7, no. 2, pp. 144–153, 2021, doi: 10.37012/jtik.v7i2.648.
A. Dwi Pangestu, I. Ernawati, and N. Chamidah, “Analisis Sentimen Terhadap PPKM Darurat Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Dengan Seleksi Fitur Information Gain,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 3, no. 2, pp. 662–671, 2022.


