Interactive Client-Side Network Simulation with Dynamic Bandwidth Management and Real-Time 3D Visualization
DOI:
https://doi.org/10.33998/processor.2025.20.2.2500Kata Kunci:
Bandwidth Management, Client-side Rendering, Data Visualization, Network Simulation, Three.jsAbstrak
Manajemen jaringan yang efektif dalam lingkungan dinamis membutuhkan perangkat yang andal untuk analisis dan visualisasi waktu nyata. Makalah ini menyajikan simulasi jaringan sisi klien yang dirancang untuk memodelkan dan memvisualisasikan perilaku jaringan yang kompleks, termasuk alokasi bandwidth dinamis, spillover lalu lintas di beberapa Penyedia Layanan Internet (ISP), dan pelambatan kemacetan di seluruh sistem. Dengan memanfaatkan Three.js, sistem ini secara prosedural menghasilkan topologi jaringan 25 node dan mensimulasikan permintaan lalu lintas yang berfluktuasi menggunakan model stokastik. Sebuah router pusat mengimplementasikan logika spillover hierarkis untuk lalu lintas eksternal dan algoritma pelambatan proporsional untuk membatasi total bandwidth, memastikan stabilitas jaringan di bawah beban puncak. Visualisasi data waktu nyata dicapai melalui paket data animasi, status node berkode warna, dan grafik deret waktu 2D yang dilapiskan. Validasi mengonfirmasi validitas fungsional sistem, menunjukkan potensinya sebagai alat edukasi dan bukti konsep untuk kembaran digital canggih untuk operasi jaringan.
Unduhan
Referensi
M. Soori, B. Arezoo, and R. Dastres, “Internet of things for smart factories in industry 4.0, a review,” Internet Things
Cyber-Phys. Syst., vol. 3, pp. 192–204, 2023, doi: 10.1016/j.iotcps.2023.04.006.
A. Mitropoulou, P. Kokkinos, and E. Varvarigos, “Identifying Network Congestion Using Knowledge Graphs and Link
Prediction,” in Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing, Taormina
(Messina) Italy: ACM, Dec. 2023, pp. 1–6. doi: 10.1145/3603166.3632129.
V. Filipov, A. Arleo, and S. Miksch, “Are We There Yet? A Roadmap of Network Visualization from Surveys to Task
Taxonomies,” Comput. Graph. Forum, vol. 42, no. 6, p. e14794, Sep. 2023, doi: 10.1111/cgf.14794.
H. Guo and L. Xu, “Research on the application of big data visualization technology in urban road congestion,” Eur. J.
Remote Sens., vol. 56, no. 1, p. 2147448, Dec. 2023, doi: 10.1080/22797254.2022.2147448.
Y. Xin, S. Sasidharam, C. Wang, and M. Cevik, “Taming Imbalance and Complexity in WAN Traffic Engineering,”
Dec. 23, 2024, arXiv: arXiv:2412.17248. doi: 10.48550/arXiv.2412.17248.
S. H. Yajadda and F. Safaei, “A Novel Reinforcement Learning Routing Algorithm for Congestion Control in Complex
Networks,” Dec. 30, 2023, arXiv: arXiv:2401.00297. doi: 10.48550/arXiv.2401.00297.
C. Güemes-Palau, M. Ferriol-Galmés, J. Paillisse-Vilanova, A. López-Brescó, P. Barlet-Ros, and A. Cabellos-Aparicio,
“RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning,” Jan. 15, 2025, arXiv:
arXiv:2501.08848. doi: 10.48550/arXiv.2501.08848.
Muhammad Shafiq, Muhammad Adnan Sami, Nudrat Bano, Rida Bano, and Muhammad Rashid, “Artificial Intelligence
in Physics Education: Transforming Learning from Primary to University Level,” Indus J. Soc. Sci., vol. 3, no. 1, pp.
–733, Mar. 2025, doi: 10.59075/ijss.v3i1.807.
M. A. Kamal, H. W. Raza, M. M. Alam, M. M. Su’ud, and A. B. A. B. Sajak, “Resource Allocation Schemes for 5G
Network: A Systematic Review,” Sensors, vol. 21, no. 19, p. 6588, Oct. 2021, doi: 10.3390/s21196588.
E. Friday, A. Olatunji, and A. Oluwatosin, “Cloud-Based Resource Management for Scalable Application Deployment,”
Int. J. Wirel. Commun. Mob. Comput., vol. 12, no. 1, pp. 1–15, Feb. 2025, doi: 10.11648/j.wcmc.20251201.11.
E. Baydal, P. Lopez, and J. Duato, “A family of mechanisms for congestion control in wormhole networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 16, no. 9, pp. 772–784, Sep. 2005, doi: 10.1109/TPDS.2005.102.
M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee, “Exploiting global knowledge to achieve self-tuned congestion
control for k-ary n-cube networks,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 3, pp. 257–272, Mar. 2004, doi:
1109/TPDS.2004.1264810.
A. Komathi et al., “Network load balancing and data categorization in cloud computing,” Indones. J. Electr. Eng.
Comput. Sci., vol. 35, no. 3, p. 1942, Sep. 2024, doi: 10.11591/ijeecs.v35.i3.pp1942-1951.
M. Shuaib et al., “An Optimized, Dynamic, and Efficient Load-Balancing Framework for Resource Management in the
Internet of Things (IoT) Environment,” Electronics, vol. 12, no. 5, p. 1104, Feb. 2023, doi:
3390/electronics12051104.
A. A. Abu-Shareha, M. M. Abualhaj, A. Alshahrani, and B. Al-Kasasbeh, “A four-state Markov model for modelling
bursty traffic and benchmarking of random early detection,” Int. J. Data Netw. Sci., vol. 8, no. 2, pp. 1151–1160, 2024,
doi: 10.5267/j.ijdns.2023.11.019.
N. Hohn, D. Veitch, and P. Abry, “Cluster processes: a natural language for network traffic,” IEEE Trans. Signal
Process., vol. 51, no. 8, pp. 2229–2244, Aug. 2003, doi: 10.1109/TSP.2003.814460.
Z. Li, M. W. Levin, X. Qu, and R. Stern, “A Network Traffic Model for the Control of Autonomous Vehicles Acting as
Moving Bottlenecks,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 9, pp. 9004–9015, Sep. 2023, doi:
1109/TITS.2023.3271187.
X. Simon Zhou et al., “A meso-to-macro cross-resolution performance approach for connecting polynomial arrival
queue model to volume-delay function with inflow demand-to-capacity ratio,” Multimodal Transp., vol. 1, no. 2, p.
, Jun. 2022, doi: 10.1016/j.multra.2022.100017.
V. N. Skoropad et al., “Dynamic Traffic Flow Optimization Using Reinforcement Learning and Predictive Analytics:
A Sustainable Approach to Improving Urban Mobility in the City of Belgrade,” Sustainability, vol. 17, no. 8, p. 3383,
Apr. 2025, doi: 10.3390/su17083383.
C. Kleinbeck, H. Schieber, K. Engel, R. Gutjahr, and D. Roth, “Multi-Layer Gaussian Splatting for Immersive Anatomy
Visualization,” IEEE Trans. Vis. Comput. Graph., vol. 31, no. 5, pp. 2353–2363, May 2025, doi:
1109/TVCG.2025.3549882.
W. K. Monib, A. Qazi, R. A. Apong, and M. M. Mahmud, “Investigating Learners’ Perceptions of Microlearning:
Factors Influencing Learning Outcomes,” IEEE Access, vol. 12, pp. 178251–178266, 2024, doi:
1109/ACCESS.2024.3472113.
L. Fang, “The Impact of AI Tools on ESL Learners’ Engagement and Language Learning Motivation,” J. Educ. Educ.
Res., vol. 12, no. 3, pp. 111–114, Mar. 2025, doi: 10.54097/hvm6w044.
L. Li, X. Qiao, Q. Lu, P. Ren, and R. Lin, “Rendering Optimization for Mobile Web 3D Based on Animation Data
Separation and On-Demand Loading,” IEEE Access, vol. 8, pp. 88474–88486, 2020, doi:
1109/ACCESS.2020.2993613.
M. A. AboArab et al., “DECODE-3DViz: Efficient WebGL-Based High-Fidelity Visualization of Large-Scale Images
using Level of Detail and Data Chunk Streaming,” J. Imaging Inform. Med., Feb. 2025, doi: 10.1007/s10278-025-01430-
M. K. Ikhwan and K. B. Yogha Bintoro, “Learning Automata Based-AODV Routing Protocol for Inter-vehicle
Communication: A Simulation Approach,” processor, vol. 20, no. 1, May 2025, doi:
33998/processor.2025.20.1.2209.
E. Guler, “CITE-PSO: Cross-ISP Traffic Engineering Enhanced by Particle Swarm Optimization in Blockchain Enabled
SDONs,” IEEE Access, vol. 12, pp. 27611–27632, 2024, doi: 10.1109/ACCESS.2024.3367600.
C. Liu, A. Chakraborty, N. Chawla, and N. Roggel, “Frequency Throttling Side-Channel Attack,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security, Los Angeles CA USA: ACM, Nov. 2022,
pp. 1977–1991. doi: 10.1145/3548606.3560682.
S. Narayan Chattopadhyay and A. Kumar Gupta, “Tipping points, multistability, and stochasticity in a two-dimensional
traffic network dynamics,” Chaos Interdiscip. J. Nonlinear Sci., vol. 34, no. 7, p. 073107, Jul. 2024, doi:
1063/5.0202785.
S. LYi, Q. Wang, F. Lekschas, and N. Gehlenborg, “Gosling: A Grammar-based Toolkit for Scalable and Interactive
Genomics Data Visualization,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 1, pp. 140–150, Jan. 2022, doi:
1109/TVCG.2021.3114876.
S. Di Bartolomeo, M. Riedewald, W. Gatterbauer, and C. Dunne, “STRATISFIMAL LAYOUT: A modular
optimization model for laying out layered node-link network visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 28,
no. 1, pp. 324–334, Jan. 2022, doi: 10.1109/TVCG.2021.3114756.
A. Bauerle, C. Van Onzenoodt, and T. Ropinski, “Net2Vis – A Visual Grammar for Automatically Generating
Publication-Tailored CNN Architecture Visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 6, pp. 2980–
, Jun. 2021, doi: 10.1109/TVCG.2021.3057483.
Hendri, “Optimisasi Pembelajaran Online di MTS Al Falah menggunakan Node.js Express dan MongoDB,” processor,
vol. 18, no. 2, Nov. 2023, doi: 10.33998/processor.2023.18.2.831.



