Prediksi Distribusi Air Perusahaan Daerah Air Minum (PDAM) Tirta Dharma Kota Pasuruan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation

Authors

  • Dwi Agustina Universitas Islam Negeri Sunan Ampel Surabaya
  • Moh. Hafiyusholeh
  • Aris Fanani
  • Dono Prasetijo

DOI:

https://doi.org/10.33998/processor.2023.18.1.697

Keywords:

backpropagation, PDAM Pasuruan, artificial neural network, water distribution, prediction

Abstract

Every human being has the right to use clean water which is the most important resource for daily needs. The author wants to predict PDAM water distribution using the backpropagation neural network method, so that it can help PDAM Tirta Dharma Pasuruan city to find out the estimated water distributed to customers for the next period. This research was conducted using water distribution data obtained directly from PDAM Pasuruan City from January 2019 to December 2021. The architectures used in this study are 4-2-1, 4-4-1, and 4-8-1, with architectures the best is 4-2-1, which has an accuracy rate of 100%, a learning rate of 0.1, a target error of 0.001, and a maximum epoch of 1000. The number of predictions for the distribution of water in PDAM Tirta Dharma, Pasuruan City in 2022 was 6,829,056, in 2023 there were 6,865. 358, in 2024 there will be 6,867,817, and in 2025 there will be 6,868,785.

Downloads

Download data is not yet available.

References

Evi Duwi Agustriani, “Pendidikan Sejarah, Jurusan,” J. Pendidik. Sej., vol. 5, no. 1, 2017, [Online]. Available: www.pu.go.id,

UIN Antasari Banjarmasin, “BAB IV Paparan Data dan Pembahasan,” Etheses.Iainmadura.Ac.Id, no. Mi, pp. 101–140, 2017, [Online]. Available: https://doi.org/10.31219/osf.io/ns2rw

Nurfalinda, E. Oktafiansyah, and A. Uperiati, “Prediksi Pendistribusian Air di Perusahaan Daerah Air Minum (PDAM) dengan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),” J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 10, no. 1, pp. 32–36, 2021, doi: 10.31629/sustainable.v10i1.1404.

D. Nuraziza, Peramalan Metode Box-Jenkins Untuk Memprediksi Banyaknya Air Bersih Yang Disalurkan Pdam Di Pekanbaru. Universitas Islam Negeri Sultan Syarif Kasim Riau, 2022.

D. Jauhari, A. Himawan, and C. Dewi, “Prediksi Distribusi Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Di PDAM Kota Malang,” J. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, p. 83, 2016, doi: 10.25126/jtiik.201632155.

A. F. Setiawan and A. K. Agung, “Klasifikasi Pola Sidik Jari Menggunakan Jaringan Syaraf Tiruan Backpropagation Untuk Analisa Karakteristik Seseorang,” Antivirus J. Ilm. Tek. Inform., vol. 10, no. 2, pp. 50–55, 2016, doi: 10.35457/antivirus.v10i2.162.

A. P. Windarto, M. R. Lubis, and Solikhun, “Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba,” Kumpul. J. Ilmu Komput., vol. 05, no. 02, pp. 147–158, 2018.

R. N. Putri and D. Setiawan, “Prototipe Pakan Ayamotomatis Menggunakan Metode Backpropagationberbasis Jaringan Syaraf Tiruan,” JOISIE (Journal Inf. Syst. Informatics Eng., vol. 2, no. 1, p. 45, 2019, doi: 10.35145/joisie.v2i1.250.

H. Pratiwi and K. Harianto, “Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, p. 282, 2019, doi: 10.30645/j-sakti.v3i2.147.

B. Satria, “Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 674–684, 2018, doi: 10.29207/resti.v2i3.575.

H. Jaya et al., Kecerdasan Buatan, vol. 53, no. 9. 2018.

M. Rahul, I. Gunawan, F. Anggraini, S. Sumarno, and I. O. Kirana, “Analisa JST Untuk Memprediksi Pembuatan SIM Menggunakan Metode Algoritma Backpropagation,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 124, 2020, doi: 10.30865/mib.v4i1.1742.

S. R. Suhartanto, C. Dewi, and L. Muflikhah, “Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Mendiagnosis Penyakit Kulit pada Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 7, pp. 555–562, 2017, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/163

L. Sinaga, E. Irawan, and W. Saputra, “Penerapan Jaringan Saraf Tiruan Metode Backpropogation Dalam Memprediksi Distribusi Air Pada PDAM Tirtauli Kota Pematangsiantar,” Pros. Semin. Nas. dan Inf. Sci., vol. 2, pp. 161–168, 2020.

B. K. Sihotang and A. Wanto, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang,” Techno.COM, vol. 17, no. 4, pp. 333–346, 2018.

Y. D. Lestari, “Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Backropagation,” J. ISD, vol. 2, no. 1, pp. 2477–863, 2017.

P. I. Putra, I. M. D. U., Gandhiadi, G., & Harini, L., “Implementasi Bacpropagation Neural Network dalam Prakiraan Cuaca di daerah Bali Selatan,” E-Jurnal Mat., no. 5, p. 126132, 2016.

Downloads

Published

2023-04-30

Abstract views:

648

PDF Download:

509

DOI:

10.33998/processor.2023.18.1.697

Dimension Badge:

How to Cite

Agustina, D., Hafiyusholeh, M., Fanani, A., & Prasetijo, D. (2023). Prediksi Distribusi Air Perusahaan Daerah Air Minum (PDAM) Tirta Dharma Kota Pasuruan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal PROCESSOR, 18(1). https://doi.org/10.33998/processor.2023.18.1.697