Optimalisasi Distribusi Barang dengan Algoritma Apriori: Studi Kasus PT. Satria Teknik Indonesia
DOI:
https://doi.org/10.33998/processor.2025.20.1.2207Keywords:
Apriori algorithm, Associattion Rules, Distribution, Inventory managementAbstract
In an increasingly competitive business environment, companies are required to make more precise strategic decisions to enhance operational efficiency. The shift in customer demand trends has become a major challenge faced by PT Satria Teknik Indonesia, a goods distribution company. To address this challenge, the company can leverage transaction data to analyze customer purchasing patterns. By utilizing the results of this analysis, PT Satria Teknik Indonesia can improve the accuracy of customer demand predictions, accelerate data-driven decision-making, and optimize inventory management. One effective method for this analysis is the Apriori algorithm. The data used were obtained from the company's transaction recording system during the period from January 2023 to October 2024 and were analyzed to discover association rules in large datasets and identify relationships between products that are frequently purchased together. The results of this study reveal two items that are prioritized for ordering: Back Support and Safety Shoes Cheetah. If customers purchase Back Support, they are highly likely to also purchase Safety Shoes Cheetah, with a support value of 20.22% and a confidence level of 100%. Conversely, if customers purchase Safety Shoes Cheetah, they tend to also buy Back Support, with a support value of 20% and a confidence level of 94.74%. This study identifies a strong purchasing association pattern between Back Support products and Safety Shoes Cheetah, providing empirical evidence of the benefits of implementing data mining techniques to improve inventory management effectiveness and better respond to customer needs
Downloads
References
I. Maryani, O. Revianti, H. M. Nur, and S. Sunanto, “Implementasi Data Mining Pada Penjualan Di Toko GOC Kosmetik Dengan Menggunakan Metode Algoritma Apriori,” Indonesian Journal on Software Engineering (IJSE), vol. 8, no. 1, pp. 92–98, Jun. 2022, doi: 10.31294/ijse.v8i1.13017.
Elfina N, Apriade V, and Syahri S, “Sales System Using Apriori Algorithm to Analyze Consumer Purchase Patterns ,” Buana Information Tchnology and Computer Sciences (BIT and CS) , vol. Vol.3 No.1, pp. 1–6, Jan. 2022.
L. O. Herianty, “Penerapan Data Mining dengan Algoritma Apriori untuk Analisis Pola Pembelian Konsumen di Violet Vape Store,” ALGOR, vol. 2, no. 1, pp. 1–8, 2020.
A. F. Budiantara and C. Budihartanti, “IMPLEMENTASI DATA MINING DALAM MANAJEMEN INVENTORY PADA PT. MASTERSYSTEM INFOTAMA MENGGUNAKAN METODE ALGORITMA APRIORI,” PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 7, no. 1, Mar. 2020, doi: 10.30656/prosisko.v7i1.2130.
N. D. Sari and S. Khoiriah, “Penerapan Metode Asosiasi Pada Toko Afifa Dengan Algoritma Apriori,” Instink: Inovasi Pendidikan, Teknologi Informasi dan Komputer, vol. 1, no. 1, pp. 8–17, Apr. 2022, doi: 10.30599/instink.v1i1.1498.
E. W. Pujiharto, K. Kusrini, and A. Nasiri, “Analisis Perbandingan Kinerja Algoritma Apriori, FP-Growth dan Eclat dalam menemukan Pola Frekuensi pada Dataset INA-CBG’S,” CogITo Smart Journal, vol. 9, no. 2, pp. 340–354, Dec. 2023, doi: 10.31154/cogito.v9i2.547.340-354.
Zulhilmi, Nahar Mardiyantoro, Dimas Prasetyo Utomo, Iman Ahmad Ihsannuddin, and Nulngafan, “IMPLEMENTASI DATA MINING UNTUK MENENTUKAN POLA PENJUALAN DI ARMADA COMPUTER MENGGUNAKAN ALGORITMA APRIORI,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 1, pp. 25–31, Feb. 2023, doi: 10.55123/storage.v2i1.1749.
A. Anas, “Implementasi Algoritma Apriori Untuk Menentukan Strategi Promosi STIE-Graha Karya Muara Bulian,” Jurnal Ilmiah Media Sisfo, vol. 14, no. 1, pp. 64–70, Apr. 2020, doi: 10.33998/mediasisfo.2020.14.1.790.
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy,” JUITA: Jurnal Informatika, vol. 8, no. 1, p. 11, May 2020, doi: 10.30595/juita.v8i1.4550.
E. Alma’arif, E. Utami, and F. W. Wibowo, “Implementasi Algoritma Apriori Untuk Rekomendasi Produk Pada Toko Online,” Creative Information Technology Journal, vol. 7, no. 1, p. 63, Mar. 2021, doi: 10.24076/citec.2020v7i1.241.
H. N. Putri, E. Budianita, F. Syafria, and F. Insani, “Penerapan Algoritma Apriori Dalam Menentukan Pola Perilaku Dan Gaya Hidup Terhadap Penderita Hipertensi,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 5, no. 3, pp. 450–458, Jun. 2022, doi: 10.32672/jnkti.v5i3.4402.
P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, pp. 9–19, Apr. 2022, doi: 10.25008/janitra.v2i1.142.
J. Heikal and A. Gandhi, “Enhancing Retail Supermarket Financial Performance Through Market Basket Analytics Using Apriori Algorithm in Indonesia Market Case,” Applied Quantitative Analysis, vol. 4, no. 1, pp. 42–53, May 2024, doi: 10.31098/quant.2153.
M. Ghofur, Y. Agus Pranoto, and F. X. Ariwibisono, “PENERAPAN ALGORITMA APRIORI UNTUK ANALISIS DATA TRANSAKSI PENJUALAN PADA TOKO BERBASIS WEB (STUDI KASUS KALIBARU MART MALANG),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 4, no. 1, pp. 279–286, Sep. 2020, doi: 10.36040/jati.v4i1.2341.
I. Rosmayati, W. Wahyuningsih, E. F. Harahap, and H. S. Hanifah, “Implementasi Data Mining pada Penjualan Kopi Menggunakan Algoritma Apriori,” Jurnal Algoritma, vol. 20, no. 1, pp. 99–107, May 2023, doi: 10.33364/algoritma/v.20-1.1259.
A. Triayudi and A. Iskandar, “Penerapan Data Mining Dalam Penentuan Proritas Pemesanan Produk Berdasarkan dengan Data Penjualan Barang Menggunakan Algoritma Apriori,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 1, pp. 25–30, Nov. 2022, doi: 10.47065/josyc.v4i1.2523.
D. Dwiputra, A. Mulyo Widodo, H. Akbar, and G. Firmansyah, “Evaluating the Performance of Association Rules in Apriori and FP-Growth Algorithms: Market Basket Analysis to Discover Rules of Item Combinations,” Journal of World Science, vol. 2, no. 8, pp. 1229–1248, Aug. 2023, doi: 10.58344/jws.v2i8.403.
M. Rajagukguk, “IMPLEMENTASI ASSOCIATION RULE MINING UNTUK MENENTUKAN POLA KOMBINASI MAKANAN DENGAN ALGORITMA APRIORI,” JURNAL FASILKOM, vol. 10, no. 3, pp. 248–254, Dec. 2020, doi: 10.37859/jf.v10i3.2308.
D. Indahsari, “Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group,” Computer Based Information System Journal, vol. 9, no. 2, pp. 1–9, Sep. 2021, doi: 10.33884/cbis.v9i2.3835.
I. Qoniah and A. T. Priandika, “ANALISIS MARKET BASKET UNTUK MENENTUKAN ASOSSIASI RULE DENGAN ALGORITMA APRIORI (STUDI KASUS: TB.MENARA),” Jurnal Teknologi dan Sistem Informasi, vol. 1, no. 2, pp. 26–33, Dec. 2020, doi: 10.33365/jtsi.v1i2.368.
V. O. B. Bryan and K. H. Handoko, “IMPLEMENTASI DATA MINING MINAT CUSTOMER TOKO DURIAN KIMHUI DENGAN ALGORITMA APRIORI,” Computer and Science Industrial Engineering (COMASIE), vol. 9, no. 1, Sep. 2023, doi: 10.33884/comasiejournal.v9i1.7569.
N. D. Sari and S. Khoiriah, “Penerapan Metode Asosiasi Pada Toko Afifa Dengan Algoritma Apriori,” Instink: Inovasi Pendidikan, Teknologi Informasi dan Komputer, vol. 1, no. 1, pp. 8–17, Apr. 2022, doi: 10.30599/instink.v1i1.1498.
I. M. D. P. Asana, I. G. I. Sudipa, A. A. T. W. Mayun, N. P. S. Meinarni, and D. V. Waas, “Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID,” INFORMAL: Informatics Journal, vol. 7, no. 1, p. 38, Apr. 2022, doi: 10.19184/isj.v7i1.30901.
P. Indraswari, A. Lia Hananto, F. Nurapriani, and S. Shofiah Hilabi, “Penerapan Algoritma Apriori Menentukan Produk paling diminati pada Distro,” Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 8, no. 2, Apr. 2024, doi: 10.33395/remik.v8i2.13545.
Z. Abidin, A. K. Amartya, and A. Nurdin, “PENERAPAN ALGORITMA APRIORI PADA PENJUALAN SUKU CADANG KENDARAAN RODA DUA (Studi Kasus: Toko Prima Motor Sidomulyo),” Jurnal Teknoinfo, vol. 16, no. 2, p. 225, Jul. 2022, doi: 10.33365/jti.v16i2.1459