Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Machine Learning Untuk Klasifikasi Performa Pelajar

Authors

  • Muhammad Bilal Alfayyadh Universitas Dinamika Bangsa
  • Setiawan Assegaff Universitas Dinamika Bangsa
  • Fachruddin Universitas Dinamika Bangsa

DOI:

https://doi.org/10.33998/jms.2025.5.2.2328

Keywords:

Classification, C4.5, Naive Bayes, Confusion Matrix, Cross Validation

Abstract

The rapid development of information and communication technology has brought significant changes in various fields, including education. One of the technological innovations that has made a major contribution is machine learning. Education is an important aspect in human resource development. In this context, understanding the factors that influence student performance and classifying their learning outcomes is very important. This research aims to compare the best performance of two models, namely the C4.5 Algorithm and Naïve Bayes, then produce a decision tree to facilitate the classification of student performance. Using a student performance dataset totaling 2,392 data, this research classifies student performance from various aspects such as grades, class participation, learning skills, and contributions to extracurricular activities. In this research, the author performed data splitting with a ratio of 70:30 and 80:20, then evaluated the model with a confusion matrix and validated the model with 10-fold cross-validation. The best result of model testing was 85.82% using the C4.5 Algorithm with 10-fold cross-validation. The results of this research are expected to not only be able to classify student performance with good accuracy, but also provide valuable insights for educators and school and campus administrators to improve the overall quality of education.

Downloads

Download data is not yet available.

References

E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 10.51211/biict.v7i2.1422.

Ibnu Daqiqil Id, MACHINE_LEARNING_Teori_Studi_Kasus_dan_Implementasi, 1st ed. Riau: UR PRESS, 2021.

Fahrizal, F. O. Reynaldi, and N. Hikmah, “Implementasi Machine Learning pada Sistem PETS Identification Menggunakan Python Berbasis UBuntu,” J. Inf. Syst. Informatics Comput., vol. 4, no. 1, pp. 86–91, 2020, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/212

A. U. Osarogiagbon, F. Khan, R. Venkatesan, and P. Gillard, “Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations,” Process Saf. Environ. Prot., vol. 147, pp. 367–384, 2021, doi: 10.1016/j.psep.2020.09.038.

A. P. Silalahi and H. G. Simanullang, “Supervised Learning Metode K-Nearest Neighbor Untuk Prediksi Diabetes Pada Wanita,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 7, no. 1, pp. 144–149, 2023, doi: 10.46880/jmika.vol7no1.pp144-149.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

S. Ratna, “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm,” Technol. J. Ilm., vol. 11, no. 3, p. 181, 2020, doi: 10.31602/tji.v11i3.3294.

R. Rachmatika and A. Bisri, “Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa,” J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 417, 2020, doi: 10.26418/jp.v6i3.43097.

A.- Husaini, I. Hariyanti, and A. R. Raharja, “Perbandingan Algoritma Decision Tree dan Naive Bayes dalam Klasifikasi Data Pengaruh Media Sosial dan Jam Tidur Terhadap Prestasi Akademik Siswa,” Technol. J. Ilm., vol. 15, no. 2, p. 332, 2024, doi: 10.31602/tji.v15i2.14381.

A. Novriandy, “Implementasi Algoritma Naive Bayes dan Algoritma C4. 5 dalam Klasifikasi Kelayakan Bantuan UMKM,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 208–217, 2023, doi: 10.30865/klik.v4i1.1099.

F. Fatmawati and N. Narti, “Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 1, pp. 1–12, 2022, doi: 10.35746/jtim.v4i1.196.

A. Rahman, “Klasifikasi Performa Akademik Siswa Menggunakan Metode Decision Tree dan Naive Bayes,” J. SAINTEKOM, vol. 13, no. 1, pp. 22–31, 2023, doi: 10.33020/saintekom.v13i1.349.

H. Sulistiani and A. A. Aldino, “Decision Tree C4.5 Algorithm for Tuition Aid Grant Program Classification (Case Study: Department of Information System, Universitas Teknokrat Indonesia),” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 40–50, 2020, doi: 10.21107/edutic.v7i1.8849.

Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020, doi: 10.52158/jacost.v1i1.9.

V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., vol. 15, no. 4, pp. 531–538, 2022, doi: 10.1002/sam.11583.

D. K. Lailil Muflikhah, Wayan Firdaus Mahmudy, Machine_Learning. UB Press, 2023.

Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.

Published

2025-09-30

Abstract views:

1

PDF Download:

0

DOI:

10.33998/jms.2025.5.2.2328

Dimension Badge:

How to Cite

Alfayyadh, M. B., Setiawan Assegaff, & Fachruddin. (2025). Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Machine Learning Untuk Klasifikasi Performa Pelajar. Jurnal Manajemen Teknologi Dan Sistem Informasi (JMS), 5(2), 1095–1104. https://doi.org/10.33998/jms.2025.5.2.2328