Penerapan Algoritma K-Means Clustering untuk Pengelompokkan Penyebaran Diare di Kabupaten Brebes

Authors

  • Laelatul Barokah Universitas Muhammadiyah Brebes
  • Fadiya Olivia Lorenza Universitas Muhammadiyah Brebes
  • Fitri Ayuning Tyas Universitas Muhammadiyah Brebes

DOI:

https://doi.org/10.33998/processor.2025.20.1.2050

Keywords:

Diarrhea, Brebes Regency, K-Means Algorithm, Data Mining, Davies Bouldin Index (DBI)

Abstract

Diarrhea is one of the leading causes of child mortality globally, including in Brebes Regency, Indonesia. This study aims to analyze the pattern of diarrhea spread in Brebes Regency using the K-Means algorithm based on the Knowledge Discovery in Databases (KDD) approach. The data used include the number of diarrhea cases and the area of subdistricts in 2021. The research process includes stages of data Selection, Preprocessing, Transformation, Data Mining and Evaluation of Clustering results using the Davies Bouldin Index (DBI). The analysis was conducted with RapidMiner to group regions into three clusters based on the level of diarrhea spread: high, medium and low. The results showed that the high cluster included Bantarkawung Subdistrict with 4,125 cases, while the medium and low clusters covered other subdistricts with varying case numbers. The evaluation showed a DBI value of -0.318, indicating that the clustering quality needs improvement. This study provides insights into the distribution of diarrhea in Brebes Regency, which can assist local governments in designing more effective handling strategies. Further research is recommended to improve data structure, use additional analytical methods, and consider broader data to enhance result accuracy.

Downloads

Download data is not yet available.

References

WHO, “Kesehatan dan Kesejahteraan,” World Health Organization. [Online]. Available: https://www.who.int/data/gho/data/major-themes/health-and-well-being

muthmainnah, Yunita, Sidaria, Latifa, Rahmi, and R. Aprilianty, Buku Penanganan Diare pada Anak Menggunakan Metode BRAT (Bread, Rice, Applesauce, and Toast). penerbit adab, 2023. [Online]. Available: https://www.google.co.id/books/edition/BUKU_PENANGANAN_DIARE_PADA_ANAK_MENGGUNA/8ZLQEAAAQBAJ?hl=id&gbpv=1&dq=diare++terbaru&pg=PA46&printsec=frontcover

D. Setiadi et al., “Penerapan Algoritma K-Means Clustering Pada Pembesaran,” vol. 7, no. 6, pp. 3320–3327, 2023.

I. A. R. P. Pratama and D. Ernawati, “Juminten Analisis Persebaran Penyakit Diare di Jawa Barat Menggunakan Data Mining dengan AlgoritmaK-Means Clustering Data Analysis of Diarrhea in West Java Using Data Mining with the K-Means Clustering Algorithm,” Manaj. Ind. dan Teknol., vol. 04, no. 01, pp. 1–12, 2023, [Online]. Available: http://juminten.upnjatim.ac.idhttps//doi.org/10.33005/juminten.v4i1.421juminten@upnjatim.ac.id

UNICEF, “Diare,” UNICEF. [Online]. Available: https://data.unicef.org/topic/child-health/diarrhoeal-disease/

T. S. Syamfithriani, N. Mirantika, and R. Trisudarmo, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pemetaan Daerah Penanganan Diare Pada Balita di Kabupaten Kuningan,” J. Sist. Inf. Bisnis, vol. 12, no. 2, pp. 132–139, 2023, doi: 10.21456/vol12i2pp132-139.

Badan Pusat Statistik Kabupaten Brebes, “Jumlah Kasus HIV/AIDS, IMS, DBD, Diare, TB, dan Malaria Menurut Kecamatan di Kabupaten Brebes,” Badan Pusat Statistik Kabupaten Brebes. [Online]. Available: https://brebeskab.bps.go.id/id/statistics-table?subject=522

M. A. Muslim et al., Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program computer, vol. 1, no. 13. 2019.

K. Kodratul Munawar and A. Irma Purnamasari, “Implementasi Algoritma K-Means Clustering Pada Klasterisasi Kasus Hiv Di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1092–1099, 2023, doi: 10.36040/jati.v7i2.6372.

M. Soni, N. Rahaningsih, and R. Danar Dana, “Komparasi Algoritma K-Means Dan K-Medoids Clustering Pada Data Penyebaran Kasus Hiv Di Provinsi Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3766–3772, 2024, doi: 10.36040/jati.v7i6.8274.

P. Cahyo and B. Sulpadianti, pembuatan aplikasi clustering gangguan jaringan menggunakan metode k-means clustering. Kreatif Industri Nusantara, 2020. [Online]. Available: https://www.google.co.id/books/edition/Pembuatan_aplikasi_clustering_gangguan_j/y8TgDwAAQBAJ?hl=id&gbpv=1&dq=k-means&pg=PA17&printsec=frontcover

S. S. H. Tita Puspita Sari, Ir. April Lia Hananto, Elfina Novalia, Tukino, “Penerapan Algoritma K-Means Dalam Klasterisasi Penyebaran Penyakit Hiv/Aids,” Infotek J. Inform. dan Teknol., 2021, doi: https://dx.doi.org/10.29408/jit.v4i1.2999.

D. Saepu Qirom, A. Faqih, and G. Dwilestari, “Implementasi Algoritma K-Means Untuk Klasterisasi Pasien Hipertensi Bersadarkan Karakteristik Pasien,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2056–2063, 2024, doi: 10.36040/jati.v8i2.8314.

F. Dikarya and S. Muharni, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Universitas Terbaik Di Dunia,” J. Inform., vol. 22, no. 2, pp. 124–131, 2022, doi: 10.30873/ji.v22i2.3324.

I. Indra, N. Nur, M. Iqram, and N. Inayah, “Perbandingan K-Means dan Hierarchical Clustering dalam Pengelompokan Daerah Beresiko Stunting,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 2, p. 356, 2023, doi: 10.35314/isi.v8i2.3612.

G. G. Setiaji, A. N. Putri, and D. A. Wicaksana, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Clustering Harga Beras di Provinsi Jawa Tengah,” J. Transform., vol. 22, no. 1, pp. 39–45, 2024, doi: 10.26623/transformatika.v22i1.10092.

E. Yolanda, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 182-`191, 2023, doi: 10.30865/klik.v4i1.1107.

N. Purba, P. Poningsih, and H. S. Tambunan, “Penerapan Algoritma K-Means Clustering Pada Penyebaran Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Provinsi Riau,” J. Inf. Syst. Res., vol. 2, no. 3, pp. 220–226, 2021, [Online]. Available: http://ejurnal.seminar-id.com/index.php/josh/article/view/736

F. C-means and K. Algorithms, “Comparative Study of Earthquake Clustering in Relation.pdf,” vol. 5, no. 158, pp. 768–778, 2024.

A. H. Nasyuha, Zulham, and I. Rusydi, “Implementation of K-means algorithm in data analysis,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 2, pp. 307–313, 2022, doi: 10.12928/TELKOMNIKA.v20i2.21986.

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 337–350, 2022, doi: 10.30812/matrik.v21i2.1411.

Q. I. Mawarni and E. S. Budi, “Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 522, 2022, doi: 10.30865/json.v3i4.4242.

N. Rohman and A. Wibowo, “Perbandingan Metode K-Medoids dan Metode K-Means Dalam Analisis Segmentasi Pelanggan Mall,” SINTECH (Science Inf. Technol. J., vol. 7, no. 1, pp. 49–58, 2024, doi: 10.31598/sintechjournal.v7i1.1507.

L. S. Riza, R. A. Rosdiyana, A. Wahyudin, and A. R. Pérez, “The k-means algorithm for generating sets of items in educational assessment,” Indones. J. Sci. Technol., vol. 6, no. 1, pp. 93–100, 2021, doi: 10.17509/ijost.v6i1.31523.

S. Ariska, D. Puspita, and I. Anggraini, “Comparison Of K-Means and K-Medoids Algorithm for Clustering Data UMKM in Pagar Alam City,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 13, no. 2, pp. 193–199, 2024, doi: 10.32736/sisfokom.v13i2.2090.

Downloads

Published

2025-05-01

Abstract views:

22

PDF Download:

10

DOI:

10.33998/processor.2025.20.1.2050

Dimension Badge:

How to Cite

Barokah, L., Lorenza, F. O., & Fitri Ayuning Tyas. (2025). Penerapan Algoritma K-Means Clustering untuk Pengelompokkan Penyebaran Diare di Kabupaten Brebes. Jurnal PROCESSOR, 20(1). https://doi.org/10.33998/processor.2025.20.1.2050