Fuzzy Time Series Model Lee dalam Memprediksi Nilai Ekspor di Indonesia

Authors

  • Yulanda Rahmadiyah Nanda Universitas Jambi
  • Syamsyida Rozi Universitas Jambi
  • Corry Sormin Universitas Jambi
  • Yuliana Safitri Universitas Jambi

DOI:

https://doi.org/10.33998/processor.2024.19.2.1794

Keywords:

Data mining; Fuzzifikasi; Fuzzy; Fuzzy Time Series; Peramalan; Prediksi

Abstract

Exports are an important indicator in the Indonesian economy. In April 2022, the Central Bureau of Statistics (BPS) reported that Indonesia's export value reached USD 27.32 billion, an increase of 47.76% compared to the previous month. Unstable export values are influenced by exchange rate fluctuations, changes in market demand, and other external factors, making business planning and trade between countries difficult. This study aims to predict the value of Indonesian exports using Lee's Fuzzy Time Series method and measure its accuracy with Mean Absolute Percentage Error (MAPE). The data used is secondary data from BPS, covering export values from January 2021 to February 2024. The steps in this method include determining the universe set, interval formation, fuzzy set, fuzzification of data, determination of Fuzzy Logic Relationship (FLR), formation of Fuzzy Logic Relationship Group (FLRG), defuzzification, and prediction results. the results showed that prediction with Fuzzy Time Series Lee has an error rate of 5.1568% (MAPE), which is in the excellent category. The predicted value of Indonesia's exports for March 2024 is US$ 21,850.69 million.

Downloads

Download data is not yet available.

References

N. Gregory Mankiw, Macroeconomics, 9th ed. Worth Publishers, 2015.

B. R. Bustami and P. Hidayat, “Analisis Daya Saing Produk Ekspor Provinsi Sumatera Utara,” J. Ekon. dan Keuang., vol. 1, no. 2, 2013.

S. Wibosono, “Analisis Pengaruh Nilai Tukar, Inflasi, Suku Bunga, Dan PDB Terhadap Neraca Perdagangan Indonesia,” Pap. Knowl. . Towar. a Media Hist. Doc., 2021.

E. P. Lestari, “DAMPAK KETIDAKSTABILAN NILAI TUKAR RUPIAH TERHADAP PERMINTAAN UANG M2 DI INDONESIA,” J. Ekon. Pembang. Kaji. Masal. Ekon. dan Pembang., vol. 9, no. 2, 2008, doi: 10.23917/jep.v9i2.1020.

R. F. Putra et al., DATA MINING : Algoritma dan Penerapannya. Jambi: PT. Sonpedia Publishing Indonesia, 2023.

Sherli Yurinanda, Sarmada, S. Rozi, A. Tasya, and D. A. Fajrin, “Prediksi Jumlah Pengunjung Perpustakaan Menggunakan Double Exponential Smoothing,” Prism. J. Pendidik. dan Ris. Mat., vol. 6, no. 2, p. 8, 2024.

A. Fausan Khofi, D. Arifianto, and I. Saifudin, “PERBANDINGAN MODEL CHEN DAN MODEL LEE PADA METODE FUZZY TIME SERIES UNTUK PERAMALAN HARGA BERAS,” J. Smart Teknol., vol. 3, no. 2, 2022.

S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu, 2013.

F. Hanesti, W. Syafmen, and S. Rozi, “The Optimization Problem of Batik Cloth Production with Fuzzy Multi-Objective Linear Programming and Application of Branch and Bound Method,” KUBIK J. Publ. Ilm. Mat., vol. 7, no. 1, pp. 19–30, 2022, doi: 10.15575/kubik.v7i1.18432.

S. Lestari and S. Yurinanda, “Prediksi Pajak Pertambahan Nilai pada Penyediaan Jasa dengan Metode Fuzzy Time Series Model Chen,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 2, 2023, doi: 10.37905/euler.v11i2.22724.

H. Citra Utami, T. Agung Cahyadi, and R. Ernawati, “Peramalan Harga Batubara Menggunakan Fuzzy Time Series Lee,” J. Sumberd. BUMI BERKELANJUTAN, vol. 2, no. 1, pp. 67–77, 2023.

D. Devianto, A. Zuardin, and M. Maiyastri, “TIME SERIES MODELING OF NATURAL GAS FUTURE PRICE WITH FUZZY TIME SERIES CHEN, LEE AND TSAUR,” BAREKENG J. Ilmu Mat. dan Terap., 2022, doi: 10.30598/barekengvol16iss4pp1185-1196.

M. Muhammad, S. Wahyuningsih, and M. Siringoringo, “Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee,” Jambura J. Math., vol. 3, no. 1, 2021, doi: 10.34312/jjom.v3i1.5940.

D. A. N. Ipan, Syaripuddin, “Perbandingan Model Chen Dan Model Lee Pada Metode Fuzzy Time Series Untuk Peramalan Produksi Kelapa Sawit Provinsi Kalimantan Timur,” Pros. Semin. Nas. Mat. Stat. dan Apl., vol. 2, no. 1, pp. 28–36, 2022.

Badan Pusat Statistik, “Nilai Ekspor,” https://www.bps.go.id/id/statistics-table/2/MTk2IzI%3D/nilai-ekspor.html. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTc1MyMy/nilai-ekspor-migas-nonmigas.html

Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, 1993, doi: 10.1016/0165-0114(93)90372-O.

Ahmad Amiruddin Anwary, “Prediksi Kurs Rupiah Terhadap Dollar Amerika Menggunakan Fuzzy Time Series,” 2011.

F. Petropoulos et al., “Forecasting: theory and practice,” Int. J. Forecast., 2022, doi: 10.1016/j.ijforecast.2021.11.001.

Downloads

Published

2024-10-31

Abstract views:

28

PDF Download:

15

DOI:

10.33998/processor.2024.19.2.1794

Dimension Badge:

How to Cite

Nanda, Y. R., Syamsyida Rozi, Corry Sormin, & Yuliana Safitri. (2024). Fuzzy Time Series Model Lee dalam Memprediksi Nilai Ekspor di Indonesia. Jurnal PROCESSOR, 19(2). https://doi.org/10.33998/processor.2024.19.2.1794